CMR 36n - 26n chia hết cho 35
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: 10^n + 18n - 1
= (10^n - 1) + 18n
= 99...9 + 18n (số 99...9 có n chữ số 9)
= 9(11...1 + 2n) (số 11...1 có n chữ số 1)
= 9.A
Xét biểu thức trong ngoặc A = 11...1 + 2n = 11...1 - n + 3n (số 11...1 có n chữ số 1).
Ta đã biết một số tự nhiên và tổng các chữ số của nó sẽ có cùng số dư trong phép chia cho 3.
Số 11...1 (n chữ số 1) có tổng các chữ số là 1 + 1 + ... + 1 = n (vì có n chữ số 1).
=> 11...1 (n chữ số 1) và n có cùng số dư trong phép chia cho 3
=> 11...1 (n chữ số 1) - n chia hết cho 3
=> A chia hết cho 3
=> 9.A chia hết cho 27
Vay 10^n + 18n - 1 chia hết cho 27 (đpcm)
\(A=n\left[n^2\left(n^2-7\right)^2-36\right]=n\left[\left(n^3-7n\right)^2-36\right]\)
\(=n\left(n^3-7n-6\right)\left(n^3-7n+6\right)\)
\(=n\left(n-3\right)\left(n+1\right)\left(n+2\right)\left(n-2\right)\left(n-1\right)\left(n+3\right)\)
\(\Rightarrow A\) là tích 7 số nguyên liên tiếp nên A luôn chia hết cho 7
Ta có: 10n - 36n - 1 = 999...9 (có n c/s 9) + 1 - 36n - 1
= 999...9 - 36n
= 9.111....1 - 9.4n
= 9.(111....1 - 4n)
Xét: 111....1 - 4n = 111...1 - n - 3n
=> 111....1 - n chia hết cho 3
=> 111...1 - n - 3n chia hết cho 3
=> 111....1 - 4n chia hết cho 3
=> 9.(111....1 - 4n) chia hết cho 27
Vậy 10n - 36n - 1 chia hết cho 27