Cho tam giác ABC,M và N di động trên hai cạnh AB,AC sao cho BN=CM.Gọi I là giao điểm của BN và CM. Chứng minh đường phân giác của góc BIC luôn đi qua 1 điểm cố định.
Cảm ơn các bạn nhiều!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Chứng minh CM=BN :AM = CN (gt)AC = BC ( cạnh tam giác đều)CAM^ = BCN^ = 60*=> Δ ACM = Δ CBN (c.g.c)=> CM = BN
b) Chứng minh góc BOC không đổi khi M và N di động trên hai cạnh AB và AC thỏa mãn AM=CNΔ ACM = Δ CBN => ACM^ = CBN^ => ABN^ = BCM^=> CBN^ + BCM^ = CBN^ + ABN^ = ABC^ = 60*=> BOC^ = 180* - (CBN^ + BCM^) = 180* - 60* = 120* không đổi
Bài 1 :
Xét \(\Delta ABC\)có AB = AC (gt)
=> \(\Delta ABC\)cân tại A
=> \(\widehat{B}=\widehat{C}\)
MÀ \(\widehat{C}=\)70
=> \(\widehat{B}=\)70
Xét \(\Delta ABC\)có \(\widehat{A}+\widehat{B}+\widehat{C}=180^0\)
=> \(\widehat{A}+70^0+70^o=180^o\)
=> \(\widehat{A}=180^0-140^o=40^0\)
Vậy \(\widehat{A}=40^0;\widehat{B}=70^0\)
AM = CN (gt)
AC = BC ( cạnh tam giác đều)
CAM^ = BCN^ = 60*
=> Δ ACM = Δ CBN (c.g.c)
=> CM = BN
b) Chứng minh góc BOC không đổi khi M và N di động trên hai cạnh AB và AC thỏa mãn AM=CN
Δ ACM = Δ CBN => ACM^ = CBN^ => ABN^ = BCM^
=> CBN^ + BCM^ = CBN^ + ABN^ = ABC^ = 60*
=> BOC^ = 180* - (CBN^ + BCM^) = 180* - 60* = 120* không đổi
a) Xét:
AM = CN (gt)
AC = BC ( cạnh tam giác đều)
CAM^ = BCN^ = 60 độ
=> Δ ACM = Δ CBN (c.g.c)
=> CM = BN
b) Vì:
Δ ACM = Δ CBN => ACM^ = CBN^ => ABN^ = BCM^
=> CBN^ + BCM^ = CBN^ + ABN^ = ABC^ = 60 độ
=> BOC^ = 180 độ - (CBN^ + BCM^) = 180 độ - 60 độ = 120 độ không đổi
a: Xét ΔABM và ΔACN có
AB=AC
\(\widehat{BAM}\) chung
AM=AN
Do đó: ΔABM=ΔACN
Suy ra: BM=CN
b: Xét ΔNBC và ΔMCB có
NB=MC
NC=MB
BC chung
Do đó: ΔNBC=ΔMCB
Suy ra: \(\widehat{GNB}=\widehat{GMC}\)
Xét ΔGNB và ΔGMC có
\(\widehat{GNB}=\widehat{GMC}\)
NB=MC
\(\widehat{GBN}=\widehat{GCM}\)
Do đó: ΔGNB=ΔGMC
a) Xét tam giác ABN và tam giác ACM:
+ AB = AC (gt).
+ \(\widehat{A}\) chung
+ AM = AN (gt).
\(\Rightarrow\) Tam giác ABN = Tam giác ACM (c - g - c).
\(\Rightarrow\) BN = CM (2 cạnh tương ứng).
b) Ta có: AB = AM + MB; AC = AN + NC.
Mà AB = AC (gt); AM = AN (gt).
\(\Rightarrow\) MB = NC.
Ta có: \(\widehat{BMI}+\widehat{AMI}=180^{o}.\)
\(\widehat{CNI}+\widehat{ANI}=180^{o}.\)
Mà \(\widehat{AMI}=\widehat{ANI}\) (Tam giác ABN = Tam giác ACM).
\(\Rightarrow\) \(\widehat{BMI}=\widehat{CNI}.\)
Xét tam giác BIM và tam giác CIN:
+ \(\widehat{BMI}=\widehat{CNI}(cmt).\)
+ \(\widehat{MBI}=\widehat{NCI}\) (Tam giác ABN = Tam giác ACM).
+ MB = NC (cmt).
\(\Rightarrow\) Tam giác BIM = Tam giác CIN (g - c - g).
c) Xét tam giác BAI và tam giác CAI có:
+ AI chung.
+ AB = AC (gt).
+ BI = CI (Tam giác BIM = Tam giác CIN)
\(\Rightarrow\) Tam giác BAI = Tam giác CAI (c - c - c).
\(\Rightarrow\) \(\widehat{BAI}=\widehat{CAI}\) (2 góc tương ứng).
\(\Rightarrow\) AI là phân giác \(\widehat{BAC}.\)
d) Xét tam giác AMN có: AM = AN (gt).
\(\Rightarrow\) Tam giác AMN cân tại A.
\(\Rightarrow\) \(\widehat{AMN}=\) \(\dfrac{180^o-\widehat{A}}{2}.\) (1)
Xét tam giác ABC có: AB = AC (gt).
\(\Rightarrow\) Tam giác ABC cân tại A.
\(\Rightarrow\) \(\widehat{ABC}=\) \(\dfrac{180^o-\widehat{A}}{2}.\) (2)
Từ (1); (2) \(\Rightarrow\widehat{AMN}=\widehat{ABC}.\Rightarrow\) \(MN\) // \(BC.\)