(cosx+1)(3sinx-4)=0
Giải từng bước giúp mình luôn ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\dfrac{2\left(x-2\right)}{x\left(x-2\right)}=\dfrac{2}{x}\)
\(a,=\dfrac{2\left(x-2\right)}{x\left(x-2\right)}=\dfrac{2}{x}\\ b,=\dfrac{\left(1-3x\right)\left(2x-1\right)+2x\left(3x-2\right)-\left(3x-2\right)}{2x\left(2x-1\right)}\\ =\dfrac{\left(1-3x\right)\left(2x-1\right)+\left(2x-1\right)\left(3x-2\right)}{2x\left(2x-1\right)}\\ =\dfrac{\left(2x-1\right)\left(1-3x+3x-2\right)}{2x}=\dfrac{-1}{2x}\)
Lời giải:
$(2x-3)(x^2+1)=0$
\(\Leftrightarrow \left[\begin{matrix} 2x-3=0\\ x^2+1=0\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} x=\frac{3}{2}(\text{chọn})\\ x^2=-1<0(\text{vô lý})\end{matrix}\right.\)
Vậy pt có nghiệm $x=\frac{3}{2}$
\(\dfrac{2}{x+1}-\dfrac{1}{x-2}=\dfrac{3x-11}{\left(x+1\right)\left(x-2\right)}\\ \Leftrightarrow\dfrac{2.\left(x-2\right)}{\left(x+1\right)\left(x-2\right)}-\dfrac{1.\left(x+1\right)}{\left(x+1\right)\left(x-2\right)}=\dfrac{3x-11}{\left(x+1\right)\left(x-2\right)}\\ \Leftrightarrow2x-4-x+1=3x-11\\ \Leftrightarrow x-3=3x-11\\ \Leftrightarrow x-3x=-11+3\\ \Leftrightarrow-2x=-8\\ \Leftrightarrow x=4\)
Vậy tập nghiệm của phương trình là S = { 4 }
\(P=\dfrac{x}{2x-2}+\dfrac{x^2+1}{2-2x^2}\)
a: \(P=\dfrac{x}{2\left(x-1\right)}-\dfrac{x^2+1}{2\left(x-1\right)\left(x+1\right)}\)
\(=\dfrac{x^2+x-x^2-1}{2\left(x-1\right)\left(x+1\right)}=\dfrac{1}{2\left(x+1\right)}\)
b: Để P=-1/2 thì 1/2(x+1)=-1/2
=>x+1=-1
=>x=-2
\(4x^2+4x+1+4x+2-2x^2-x\le0\)
\(\Leftrightarrow2x^2+7x+3\le0\Leftrightarrow\left(2x+1\right)\left(x+3\right)\le0\)
TH1 : \(\left\{{}\begin{matrix}2x+1\ge0\\x+3\le0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge-\dfrac{1}{2}\\x\le-3\end{matrix}\right.\)<=> -1/2 =< x =< -3
TH2 : \(\left\{{}\begin{matrix}2x+1\le0\\x+3\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\le-\dfrac{1}{2}\\x\ge-3\end{matrix}\right.\)( vô lí )
\(y=cosx-3.sinx\le\sqrt{\left(1+\left(-3\right)^2\right)\left(cos^2x+sin^2x\right)}=\sqrt{10}\)
\(\Rightarrow y_{max}=\sqrt{10}\)
\(\frac{x-4}{-5}=\frac{1-2x}{3}\)
Nhân cả 2 vế với 15 ,ta được:
\(\frac{15.\left(x-4\right)}{-5}=\frac{15.\left(1-2x\right)}{3}\)
\(\Leftrightarrow\left(-3\right).\left(x-4\right)=5.\left(1-2x\right)\)
\(\Leftrightarrow-3x+12=5-10x\)
\(\Leftrightarrow-3x+10x=5-12\)
\(\Leftrightarrow7x=-7\)
\(\Leftrightarrow x=-1\)
Vậy x=-1
(𝑥−4)/−5=(1−2𝑥)/3
−15⋅𝑥−4−5=−15⋅−2𝑥+13
−15⋅𝑥−4−5=−15⋅−2𝑥+13
3(𝑥−4)=−5(−2𝑥+1)
3(x-4)=-5(-2x+1)
3(𝑥−4)=−5(−2𝑥+1)
3𝑥−12=−5(−2𝑥+1)
3𝑥−12=−5(−2𝑥+1)
3𝑥−12=10𝑥−5
𝑥 = -1
Pt\(\Rightarrow\)\(\left[{}\begin{matrix}cosx+1=0\\3sinx-4=0\end{matrix}\right.\)\(\left[{}\begin{matrix}cosx=-1\\sinx=\dfrac{4}{3}\left(loại\right)\end{matrix}\right.\Leftrightarrow\)cosx=-1
sinx=\(\dfrac{4}{3}\)loại do sinx\(\notin\)\([-1;1]\)
Khi đó x=\(\Pi+k2\Pi\)(k\(\in\)Z)