a+2b+3c>=14. Chứng minh a^2+b^2+c^2>=14. Giúp mình nha
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a^3/b +a^3/b +b^2 >=3.a^2
=>2a^3/b +b^2>=3a^2
tuong tu
2b^3/c +c^2 >=3.b^2
2c^3/a +a^2 >=3.c^2
cog lai ta dc
2(a^3/b+b^3/c+c^3/a) +(a^2+b^2+c^2) >=3.(a^2+b^2+c^2)
=>a^3/b+b^3/c+c^3/a >=a^2+b^2+c^2
mat khc
a^2+b^2+c^2>=ab+bc+ca
nen
a^3/b+b^3/c+c^3/a >=ab+bc+ca
dau = xay ra khi a=b=c
k nha
a^3/b +a^3/b +b^2 >=3.a^2
=>2a^3/b +b^2>=3a^2
tuong tu
2b^3/c +c^2 >=3.b^2
2c^3/a +a^2 >=3.c^2
cog lai ta dc
2(a^3/b+b^3/c+c^3/a) +(a^2+b^2+c^2) >=3.(a^2+b^2+c^2)
=>a^3/b+b^3/c+c^3/a >=a^2+b^2+c^2
mat khc
a^2+b^2+c^2>=ab+bc+ca
nen
a^3/b+b^3/c+c^3/a >=ab+bc+ca
dau = xay ra khi a=b=c
1 . a) Thực hiện so sánh 3a và 3b, 3a+1 và 3b+1 từ đó rút ra điêu cần chứng minh
b) Thực hiện so sánh -2a và -2b, -2a - 5 và -2b -5 từ đó rút ra điêu cần chứng minh
Cậu tự trình bày nhé ? Giảng sơ sơ thế là hiểu ấy
Ta có : \(\left\{{}\begin{matrix}a^2+b^2+c^2=14\\a+2b+3c=14\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a^2+b^2+c^2=14\left(1\right)\\2a+4b+6c=28\left(2\right)\end{matrix}\right.\)
Lấy \(\left(1\right)-\left(2\right)\Rightarrow a^2-2a+b^2-4b+c^2-6c=-14\)
\(\Leftrightarrow\left(a^2-2a+1\right)+\left(b^2-4b+4\right)+\left(c^2-6c+9\right)=0\)
\(\Leftrightarrow\left(a-1\right)^2+\left(b-2\right)^2+\left(c-3\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(a-1\right)^2=0\\\left(b-2\right)^2=0\\\left(c-3\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=1\\b=2\\c=3\end{matrix}\right.\)
\(\Rightarrow T=abc=1.2.3=6\)
Vậy \(T=6\)
Áp dụng bất đẳng thức Bunhiacốpxki, ta có:
\(\left(a^2+b^2+c^2\right)\left(1^2+2^2+3^2\right)\ge\left(a+2b+3c\right)^2\)
\(\Rightarrow\left(a^2+b^2+c^2\right).14\ge14^2\)
\(\Rightarrow a^2+b^2+c^2\ge14\)
Dấu "=" xảy ra khi: \(\hept{\begin{cases}\frac{a}{1}=\frac{b}{2}=\frac{c}{3}\\a+2b+3c=14\end{cases}}\)
\(\frac{a}{1}=\frac{b}{2}=\frac{c}{3}\Rightarrow\frac{a}{1}=\frac{2b}{4}=\frac{3c}{9}\)
Áp dụng t/c dãy tỉ số bằng nhau:
\(\frac{a}{1}=\frac{2b}{4}=\frac{3c}{9}=\frac{a+2b+3c}{1+4+9}=\frac{14}{14}=1\)
\(\Rightarrow a=1,b=2,c=3\)