Cho a,b,c thỏa mãn
\(\left(a+b\right)\left(b+c\right)\left(c+a\right)\ne0\) và \(\dfrac{a^2}{a+b}+\dfrac{b^2}{b+c}+\dfrac{c^2}{c+a}=\dfrac{a^2}{b+c}+\dfrac{b^2}{c+a}+\dfrac{c^2}{a+b}\)
Chứng minh : a=b=c
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a^2+b^2+c^2\ge ab+bc+ca=2\)
Áp dụng BĐT C-S:
\(P\ge\dfrac{\left(a+b+c\right)^2}{3-\left(a^2+b^2+c^2\right)}=\dfrac{a^2+b^2+c^2+4}{3-\left(a^2+b^2+c^2\right)}\)
Đặt \(a^2+b^2+c^2=x\)
Ta cần c/m: \(\dfrac{x+4}{3-x}\ge6\Leftrightarrow x+4\ge18-6x\)
\(\Leftrightarrow x\ge2\) (đúng)
Dấu = xảy ra khi \(a=b=c=\pm\sqrt{\dfrac{2}{3}}\)
Lưu ý: Ko buff bẩn + ko spam + ko copy + ko nhận những câu trả lời chứa link tới các web khác + phải có lời giải thích đàng hoàng + vv
Ta có VP:
\(\dfrac{2}{\sqrt{\left(1+a^2\right)\left(1+b^2\right)\left(1+c^2\right)}}\)
Thay \(1=ab+bc+ca\)
\(=\dfrac{2}{\sqrt{\left(ab+bc+ca+a^2\right)\left(ab+bc+ca+b^2\right)\left(ab+bc+ca+c^2\right)}}\)
\(=\dfrac{2}{\sqrt{\left[b\left(a+c\right)+a\left(a+c\right)\right]\left[a\left(b+c\right)+b\left(b+c\right)\right]\left[b\left(a+c\right)+c\left(a+c\right)\right]}}\)
\(=\dfrac{2}{\sqrt{\left(a+c\right)\left(a+b\right)\left(a+b\right)\left(b+c\right)\left(b+c\right)\left(a+c\right)}}\)
\(=\dfrac{2}{\sqrt{\left[\left(a+c\right)\left(a+b\right)\left(b+c\right)\right]^2}}\)
\(=\dfrac{2}{\left(a+c\right)\left(a+b\right)\left(b+c\right)}\)
_____________
Ta có VT:
\(\dfrac{a}{1+a^2}+\dfrac{b}{1+b^2}+\dfrac{c}{1+c^2}\)
Thay \(1=ab+ac+bc\)
\(=\dfrac{a}{ab+ac+bc+a^2}+\dfrac{b}{ab+ac+bc+b^2}+\dfrac{c}{ab+ac+bc+c^2}\)
\(=\dfrac{a}{a\left(a+b\right)+c\left(a+b\right)}+\dfrac{b}{b\left(b+c\right)+a\left(b+c\right)}+\dfrac{c}{c\left(b+c\right)+a\left(b+c\right)}\)
\(=\dfrac{a}{\left(a+c\right)\left(a+b\right)}+\dfrac{b}{\left(a+b\right)\left(b+c\right)}+\dfrac{c}{\left(a+c\right)\left(b+c\right)}\)
\(=\dfrac{a\left(b+c\right)}{\left(a+c\right)\left(b+c\right)\left(a+b\right)}+\dfrac{b\left(a+c\right)}{\left(a+b\right)\left(a+c\right)\left(b+c\right)}+\dfrac{c\left(a+b\right)}{\left(a+b\right)\left(a+c\right)\left(b+c\right)}\)
\(=\dfrac{ab+ac+ab+bc+ac+bc}{\left(a+b\right)\left(a+c\right)\left(b+c\right)}\)
\(=\dfrac{2ab+2ac+2bc}{\left(a+b\right)\left(a+c\right)\left(b+c\right)}\)
\(=\dfrac{2\cdot\left(ab+ac+bc\right)}{\left(a+b\right)\left(a+c\right)\left(b+c\right)}\)
\(=\dfrac{2}{\left(a+b\right)\left(a+c\right)\left(b+c\right)}\left(ab+ac+bc=1\right)\)
Mà: \(VP=VT=\dfrac{2}{\left(a+b\right)\left(a+c\right)\left(b+c\right)}\)
\(\Rightarrow\dfrac{a}{1+a^2}+\dfrac{b}{1+b^2}+\dfrac{c}{1+c^2}=\dfrac{2}{\sqrt{\left(1+a^2\right)\left(1+b^2\right)\left(1+c^2\right)}}\left(dpcm\right)\)
Lời giải:
Đặt $\frac{x}{a}=\frac{y}{b}=\frac{z}{c}=t$
$\Rightarrow x=at; y=bt; z=ct$. Ta có:
$(x+y+z)^2=(at+bt+ct)^2=t^2(a+b+c)^2=t^2(*)$
Mặt khác:
$x^2+y^2+z^2=(at)^2+(bt)^2+(ct)^2=t^2(a^2+b^2+c^2)=t^2(**)$
Từ $(*); (**)\Rightarrow (x+y+z)^2=x^2+y^2+z^2$ (đpcm)
P(x)=\(ax^2+bx+c\) (1)(a\(\ne0\) )
Ta có :
\(\dfrac{a}{1}=\dfrac{b}{2}=\dfrac{c}{3}\)\(\Rightarrow\left\{{}\begin{matrix}b=2a\\c=3a\end{matrix}\right.\)(2)
Thay(2) vào (1)\(\Rightarrow P\left(x\right)=ax^2+2ax+3a\)
\(\Rightarrow\dfrac{P\left(-2\right)-3P\left(-1\right)}{a}=\dfrac{4a-4a+3a-3\left(a-2a+3a\right)}{a}\)=\(\dfrac{3a-3a+6a-9a}{a}=\dfrac{-3a}{a}=-3\)
Đề bài hình như bị sai em, thay điểm rơi ko thỏa mãn
Biểu thức là \(a+b+\sqrt{2\left(a+c\right)}\) mới đúng
\(\Leftrightarrow a^2\left(\dfrac{1}{a+b}-\dfrac{1}{b+c}\right)+b^2\left(\dfrac{1}{b+c}-\dfrac{1}{c+a}\right)+c^2\left(\dfrac{1}{c+a}-\dfrac{1}{a+b}\right)=0\)
\(\Leftrightarrow\dfrac{a^2\left(c-a\right)}{\left(a+b\right)\left(b+c\right)}+\dfrac{b^2\left(a-b\right)}{\left(a+c\right)\left(b+c\right)}+\dfrac{c^2\left(b-c\right)}{\left(a+b\right)\left(a+c\right)}=0\)
\(\Leftrightarrow a^2\left(c-a\right)\left(c+a\right)+b^2\left(a-b\right)\left(a+b\right)+c^2\left(b-c\right)\left(b+c\right)=0\)
\(\Leftrightarrow a^2\left(c^2-a^2\right)+b^2\left(a^2-b^2\right)+c^2\left(b^2-c^2\right)=0\)
\(\Leftrightarrow a^2c^2+a^2b^2+b^2c^2-a^4-b^4-c^4=0\)
\(\Leftrightarrow2a^4+2b^4+2c^4-2a^2b^2-2a^2c^2-2b^2c^2=0\)
\(\Leftrightarrow\left(a^2-b^2\right)^2+\left(a^2-c^2\right)^2+\left(b^2-c^2\right)^2=0\)
\(\Rightarrow\left\{{}\begin{matrix}a^2-b^2=0\\a^2-c^2=0\\b^2-c^2=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}\left(a-b\right)\left(a+b\right)=0\\\left(a-c\right)\left(a+c\right)=0\\\left(b-c\right)\left(b+c\right)=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}a-b=0\\a-c=0\\b-c=0\end{matrix}\right.\) (do \(\left(a+b\right)\left(a+c\right)\left(b+c\right)\ne0\) \(\Rightarrow\left\{{}\begin{matrix}a+b\ne0\\a+c\ne0\\b+c\ne0\end{matrix}\right.\))
\(\Rightarrow a=b=c\)