Tìm n thuộc N để:
(3n+2) và (2n-1) nguyên tố cùng nhau
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(Taco::::::::::::::::::::::::::::::::::::::::::::::::::::::::::\)
\(GỌi:ƯCLN\left(2n+1;7n+2\right)=d\Rightarrow7\left(2n+1\right)-2\left(7n+2\right)⋮d\Rightarrow3⋮d\)
Để 2n+1 và 7n+2 nguyên tố cùng nhau thì: 2n+1 hoặc 7n+2 ko chia hết cho 3
Giả sử: 2n+1 chia hết cho 3
=> 2n+1-3 chia hết cho 3
=> 2n-2 chia hết cho 3
=> 2(n-1) chia hết cho 3=> n-1 chia hết cho 3
Giả sử: 7n+2 chia hết cho 3
=> 7n+2-9 chia hết cho 3
=>.........
Vậy với n khác 3k+1;3k+2 thì thỏa mãn
Ta có : k là ƯCLN của 7n + 10 và 5n + 7
Vậy : 7n + 10 chia hết cho k ; 5n + 7 chia hết cho k
Hay 5(7n + 10 ) và 7(5n + 7 )
35n + 50 và 35n + 49 chia hết cho k
=> ĐPCM
Hai bài kia bạn làm tương tư nhé , chúc may mắn
a,gọi d là UCLN của 2 số trên
ta có 3n+5-2n+3\(⋮\)d
=>2(3n+5)-3(2n+3)\(⋮\)d
6n+10-6n+9\(⋮\)d
=> 1\(⋮\)d=>d=1
=> 2 số trên nguyên tố cùng nhau
a , 3n + 5 và 2n + 3
Gọi ước chung lớn nhất của 3n + 5 và 2n + 3 là d
Ta có : 3n + 5 chia hết cho d , 2n + 3 chia hết cho d
2 ( 3n + 5 ) chia hết cho d , 3 ( 2n + 3 ) chia hết cho d
( 6n + 10 ) - ( 6n + 9 ) chia hết cho d
1 chia hết cho d suy ra d = 1
Vậy 3n + 5 và 2n + 3 nguyên tố cùng nhau ( n thuộc N )
b , 2n ^ 2 + 1 và 2n ^ 2 - 1
Gọi ước chung lớn nhất của 2n ^ 2 + 1 và 2n ^ 2 - 1 là d
Ta có : 2n ^ 2 + 1 chia hết cho d , 2n ^ 2 - 1 chia hết cho d
( 2n ^ 2 + 1 ) - ( 2n ^ 2 - 1 ) chia hết cho d
2n ^ 2 + 1 - 2n ^ 2 + 1 chia hết cho d suy ra 2 chia hết hết cho d nên d thuộc ước của 2
Mà d lẻ ( vì 2n ^ 2 + 1 là lẻ )
Do đó d = 1 suy ra ước chung lớn nhất của 2n ^ 2 + 1 và 2n ^ 2 - 1 bằng 1
Vậy 2n ^ 2 +1 và 2n ^ 2 - 1 nguyên tố cùng nhau
A/ Đặt ƯCLN(n+1;4n+3) = d [ d thuộc N]
=> n+1 chia hết cho d
4n+3 chia hết cho d
=> 4n+4chia hết cho d [( n+1) x 4]
4n+3 chia hết cho d
=> (4n+4) - (4n+3) chia hết cho d
=> 1 chia hết cho d
Mà d thuộc N => d=1 => ƯCLN( n+1; 4n+3) = 1
=> n+ 1 và 4n+ 3 nguyên tố cùng nhau
Vậy .........................................
B/ Đặt ƯCLN (2n +3; 3n+ 4)= d [d thuộc N]
=> 2n + 3 chia hết cho d
3n+4 chia hết cho d
=> 6n+ 9 chia hết cho d [(2n+3) x 3]
6n+ 8 chia hết cho d [(3n+4) x 2]
=> (6n+9) - (6n+8) chia hết cho d
=> 1 chia hết cho d
Mà d thuộc N => d=1 => ƯCLN(2n+3; 3n+4)=1
=> 2n+3 và 3n+4 nguyên tố cùng nhau
Vậy........................................................... Bye nha ! (^_^)
gọi ước chung của 3n+2 và 2n-1 là d
ta có: 3n+2 chia hết cho d, 2n-1 chia hết cho d
suy ra 6n+4 chia hết cho d, 6n-3 chia hết cho d
tổng 2 số chia hết cho d
suy ra 1 chia hết cho d
vậy 2 số đó là số nguyên tố cùng nhau
Gọi ƯCLN(3n+2;2n-1) = d ( d là stn )
\(\Rightarrow\) \(\hept{\begin{cases}3n+2⋮d\\2n-1⋮d\end{cases}}\)
\(\Rightarrow3n+2-2n+1⋮d\)
\(\Rightarrow n+1⋮d\)
\(\Rightarrow3n+3⋮d\)
Mà \(3n+2⋮d\)
\(\Rightarrow3n+3-3n-2⋮d\)
\(\Rightarrow1⋮d\)
Mà d là stn
=> d = 1
Vậy 2 số đó là 2 số nguyên tố cùng nhau