tìm số dư của phép chia \(1^n+2^n+3^n\)cho 4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì a bằng số dư của phép chia N cho 2.
=> a = 1
=> abcd thuộc dạng 1bcd
=> e thuộc 0, 1, 2, 3, 4, 5
Vì d bằng số dư của phép chia N cho 5
=> de thuộc 00, 11, 22, 33, 44, 05
Vì c bằng số dư của phép chia N cho 4
=> cde thuộc 000, 311, 222, 133, 044, 105
=. abcde có dạng là 1b000, 1b311, 1b222, 1b133, 1b044, 1b105
Vì b là số dư của phép chia N cho 3
=> a + b + c + d + e chia hết cho 3
=> Chọn được số 1b311, 1b044
Ta được các số là : 10311, 11311, 12311, 10044, 11044, 12044.
a bằng số dư của phép chia N cho 2
=>a=1
=>abcd có dạng 1bcd
e thuộc số dư của phép N cho 6
=>e thuộc 0.1.2.3.4.5 mà d bằng số dư của phép chia N cho 5
=> d,e thuộc 00.11.22.33.44.05
c bằng số dư của phép chia N cho 4
=>c,d,e thuộc 000.311.222.133.044.105
=> a,b,c,d,e có dạng là 1b000,1b311,1,222,1b333,1b044,1b105
vì b bằng số dư của phép chia N cho 3
=>a+c+d+e chia hết cho 3
=> chọn được số 1b311.1b044
Ta được các số là : 10311.11311.12311.10044.11044.12044
Bài toán này là 'Bài toán 108' thuộc chuyên mục 'Toán vui hàng tuần' mà !