1.Cho biểu thức P = \(\left(\dfrac{2x}{x-2}+\dfrac{x}{2-x}\right):\dfrac{x^2+1}{x-2}\)
a) Tìm điều kiện của x để P xác định
b) Rút gọn P
c) Tìm giá trị của P khi x=-1
d) Với x>0. Tìm GTLN của P
2.Cho biểu thức M=\(\left(\dfrac{1}{3x-1}-\dfrac{2x+2}{9x^2-1}\right):\left(\dfrac{1}{x}-\dfrac{3}{3x+1}\right)\)
a) Rút gọn M
b) Tìm x để M=0
c) Tìm GTNN của P= M.(3x-1)
a.
ĐKXĐ: \(x\ne2\)
b.
\(P=\left(\dfrac{2x}{x-2}+\dfrac{x}{2-x}\right):\dfrac{x^2+1}{x-2}\)
\(=\left(\dfrac{2x}{x-2}-\dfrac{x}{x-2}\right)\cdot\dfrac{x-2}{x^2+1}\)
\(=\dfrac{x}{x-2}\cdot\dfrac{x-2}{x^2+1}=\dfrac{x}{x^2+1}\)
c.
\(x=-1\Rightarrow P=-\dfrac{1}{\left(-1\right)^2+1}=-\dfrac{1}{2}\)
d.
\(P=\dfrac{x}{x^2+1}\cdot\dfrac{x^2+1}{x}-\dfrac{1}{P}\ge1-\dfrac{1}{P}\)
\(\Rightarrow\dfrac{P^2+1}{P}\ge1\)
\(\Rightarrow P^2+1\ge P\) \(\Rightarrow P\left(P-1\right)\ge1\)
\(\Rightarrow P\ge2\)
Dấu "=" khi x = ...................
Bài 2:
a: \(M=\dfrac{3x+1-2x-2}{\left(3x-1\right)\left(3x+1\right)}:\dfrac{3x+1-3x}{x\left(3x+1\right)}\)
\(=\dfrac{x-1}{\left(3x-1\right)\left(3x+1\right)}\cdot\dfrac{x\left(3x+1\right)}{1}=\dfrac{x\left(x-1\right)}{3x-1}\)
b: Để M=0 thì x(x-1)=0
=>x=1(nhận) hoặc x=0(loại)
c: \(P=M\cdot\left(3x-1\right)=x\left(x-1\right)=x^2-x+\dfrac{1}{4}-\dfrac{1}{4}=\left(x-\dfrac{1}{2}\right)^2-\dfrac{1}{4}>=-\dfrac{1}{4}\)
Dấu = xảy ra khi x=1/2