Hai đa thức \(a\cdot x^2+b\cdot x+c\) và \(a'\cdot x^2+b'\cdot x+c'\) có giá trị bằng nhau với mọi giá trị của x.Chứng minh rằng a = a', b = b', c = c'.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(P\left(0\right)=a.0+b.0+c.0+d=d⋮5\Rightarrow d⋮5\)
\(\left\{{}\begin{matrix}P\left(1\right)=a+b+c+d⋮5\\P\left(-1\right)=-a+b-c+d⋮5\end{matrix}\right.\) \(\Rightarrow P\left(1\right)+P\left(-1\right)⋮5\)
\(\Rightarrow2b+2d⋮5\) , mà \(d⋮5\Rightarrow2b⋮5\Rightarrow b⋮5\) (do 2 không chia hết cho 5)
Do \(\left\{{}\begin{matrix}P\left(1\right)=a+b+c+d⋮5\\b⋮5\\d⋮5\end{matrix}\right.\) \(\Rightarrow a+c⋮5\Rightarrow2a+2c⋮5\) (1)
Lại có \(P\left(2\right)=8a+4b+2c+d⋮5\) (2)
Từ \(\left(1\right);\left(2\right)\Rightarrow P\left(2\right)+2a+2c⋮5\)
\(\Rightarrow10a+4b+4c+d⋮5\)
Mà \(\left\{{}\begin{matrix}10⋮5\Rightarrow10a⋮5\\b⋮5\Rightarrow4b⋮5\\d⋮5\end{matrix}\right.\) \(\Rightarrow4c⋮5\Rightarrow c⋮5\) (do 4 không chia hết cho 5)
\(\left\{{}\begin{matrix}a+c⋮5\\c⋮5\end{matrix}\right.\) \(\Rightarrow a⋮5\)
Vậy \(a,b,c,d\) đều chia hết cho 5
Bài 1:
ta có M(x)=a.x2+5.x-3 và x=\(\frac{1}{2}\)
Cho M=0
\(\Rightarrow\)a.1/22+5.1/2-3=0
a.1/4+5/2-3=0
a.1/4-1/2=0
a.1/4=1/2
a=1/2:1/4
a=2
Bài 2
Q(x)=x4+3.x2+1
=x2.x2+1,5.x2+1,5.x2+1,5.1,5-1,25
=x2.(x2+1,5)+1,5.(x2+1,5)-1,25
=(x2+1,5)(x2+1,5)-1,25
\(\Rightarrow\)(x2+1,5)2 \(\ge\)0 với \(\forall\)x
\(\Rightarrow\)(x2+1,5)2-1,25\(\ge\)1,25 > 0
Vậy đa thức Q ko có nghiệm
\(P\left(0\right)=c\)mà P(0) là số nguyên
\(\Rightarrow c\)là số nguyên
Ta có: \(P\left(1\right)=a+b+c\)mà P(1) là số nguyên và c là số nguyên
\(\Rightarrow a+b\)nguyên
\(\Rightarrow2a+2b\left(1\right)\)nguyên
Lại có: \(P\left(2\right)=4a+2b\left(2\right)\)là số nguyên
Từ (1) và (2) \(\Rightarrow2a\)là số nguyên
\(\Rightarrow a\)là số nguyên
Mà \(P\left(1\right)=a+b+c\), a,c là số nguyên nên b là số nguyên
\(\Rightarrow P\left(x\right)=ax^2+bx+c\)có giá trị nguyên với mọi x nguyên
P(0) là số nguyên \(\Rightarrow a.0^2+b.0+c=c\inℤ\)
\(\Rightarrow c\inℤ\)
P(1) là số nguyên \(\Rightarrow a.1^2+b.1+c=a+b+c\inℤ\)\(\Rightarrow a+b\inℤ\)\(\Rightarrow2a+2b\inℤ\)(1)
P(2) là số nguyên \(\Rightarrow a.2^2+b.2+c=4a+2b+c\inℤ\)\(\Rightarrow4a+2b\inℤ\)(2)
Trừ (2) cho (1) ta được \(\left(4a+2b\right)-\left(2a+2b\right)=2a\inℤ\)\(\Rightarrow a\inℤ\)
\(\Rightarrow b\inℤ\)\(\Rightarrow a,b,c\inℤ\)
mà x nguyên \(\Rightarrow\)P(x) có giá trị nguyên với mọi x nguyên ( đpcm)
Làm khâu rút gọn thôi
\(=\frac{15}{x+2}+\frac{42}{3x+6}\)
\(=\frac{15}{x+2}+\frac{42}{3\left(x+2\right)}\)
\(=\frac{3.15+42}{3\left(x+2\right)}\)
\(=\frac{87}{3\left(x+2\right)}\)
\(=\frac{29}{x+2}\)
Câu b có phải để tử chia hết cho mẫu không nhỉ? Không chắc thôi để ngkh làm
a) \(f\left(x\right)=2.\left(x^2\right)^n-5.\left(x^n\right)^2+8n^{n-1}.x^{1+n}-4.x^{n^2+1}.x^{2n-n^2-1}\)
\(=2x^{2n}-5x^{2n}+8x^{2x}-4x^{2n}\)
\(=x^{2n}\)
b) \(f\left(x\right)+2020=x^{2n}+2020\)
Vì \(n\in N\Rightarrow2n\in N\)và 2n là số chẵn
\(\Rightarrow x^{2n}\ge1\)
\(\Rightarrow x^{2n}+2020\ge2021\)
Dấu"="xảy ra \(\Leftrightarrow x^{2n}=1\)
\(\Leftrightarrow n=0\)
Vậy ...
( ko bít đúng ko -.- )
Ta có x+y+1=0=>xây =-1
A = x3+x2.y- x.y2-y3 + x2 - y2 +2.x+2.y +3
A = x2 .(x+y)- y2 .(x+y) + x² - y² +2.(x+y)+3
A= x².(-1)-y².(-1)+ x²-y²+ (-2)+3
A= x².0-y².0+1=1
a. \(A=\left(x^2+5xy+4y^2\right)\left(x^2+5xy+6y^2\right)+y^4\)
Đặt \(t=x^2+5xy+5y^2\left(t\inℤ\right)\)
\(\Rightarrow A=\left(t-y^2\right)\left(t+y^2\right)+y^4=t^2=\left(x^2+5xy+5y^2\right)^2\)
Vậy giá trị của A là một số chính phương
- Thay \(x=0\) vào 2 đa thức ta được:
\(a.0+b.0+c=a'.0+b'.0+c'\Rightarrow c=c'\)
- Thay \(x=1\) vào ta được:
\(a+b+c=a'+b'+c'\Rightarrow a+b=a'+b'+c'-c\Rightarrow a+b=a'+b'\) (1)
- Thay \(x=-1\) vào ta được:
\(a-b+c=a'-b'+c'\Rightarrow a-b=a'-b'\Rightarrow a'=a-b+b'\)(2)
Thay (2) vào (1):
\(a+b=\left(a-b+b'\right)+b'\Rightarrow b=-2+2b'\Rightarrow2b=2b'\Rightarrow b=b'\)
Lại có: \(\left\{{}\begin{matrix}a+b=a'+b'\\b=b'\end{matrix}\right.\) \(\Rightarrow a=a'\)
Vậy \(\left\{{}\begin{matrix}a=a'\\b=b'\\c=c'\end{matrix}\right.\)