chứng tỏ
A=n(n+1)(n+2)-18n chia hết cho 6 (n thuộc Z)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
10n+18n-1
=10n-1-9n+27n
=999..9-9n+27n
=9(11...1-n)+81n chia hết cho 27.
Vì A là tích ba nguyên liên tiếp nên chia hết cho 2 và 3, mà 2 và 3 là số nguyên tố cùng nhau nên chia hết cho 6.
Vì n;n-1;n-2 là ba số nguyên liên tiếp
nên \(n\left(n-1\right)\left(n-2\right)⋮3!\)
hay \(A⋮6\)
n thuộc Z
=>n(n-1)(n-2) là tích của 3 số nguyên liên tiếp
=>A chia hết cho 6
cho A = 10n+18n-1 chia hết cho 27
suy ra 10n+18n-1 chia hết cho 27
suy ra n=1
Vì \(n\left(n-1\right)⋮2\left(1\right)\)
\(\left(n-1\right)\left(n-2\right)⋮3\left(2\right)\)
Từ (1) và (2) suy ra:\(n\left(n-1\right)\left(n-2\right)⋮6\)
\(b,n^4-10n^2+9=n^4-n^2-9n^2+9=\left(n^2-1\right)\left(n^2-9\right)\\ =\left(n-1\right)\left(n+1\right)\left(n-3\right)\left(n+3\right)\)
Vì \(n\in Z\) và n lẻ nên \(n=2k+1\left(k\in Z\right)\)
\(\Leftrightarrow\left(n-1\right)\left(n+1\right)\left(n-3\right)\left(n+3\right)\\ =2k.\left(2k+2\right).\left(2k-2\right).\left(2k+4\right)\\ =16k\left(k+1\right)\left(k-1\right)\left(k+2\right)\)
Vì \(k,k+1,k-1,k+2\) là 4 số nguyên liên tiếp nên chia hết cho \(1.2.3.4=24\)
Do đó \(16k\left(k+1\right)\left(k-1\right)\left(k+2\right)⋮24.16=384\)
A = n(n+1)(n+2) - 18n
Xét vế (1) của A là n(n+1)(n+2) ta có:
Trong 3 số n(n+1)(n+2) có ít nhất một số chia hết cho 2 (3 số TN liên tiếp)
Trong 3 số n(n+1)(n+2) có ít nhất một số chia hết cho 2 (3 số TN liên tiếp)
=> n(n+1)(n+2) chia hết cho 2 x 3 = 6
Xét vế (2) của A là 18n ta có: 18n = 3.6.n = 6.3n
Vì cả SBT và ST đều chia hết cho 6 nên A chia hết cho 6 (dpcm)