chứng minh rằng
a/ 1994.1995.1996 chia hết cho 24
b/ 4k(k+1)+8(k+1)+8 chia hết cho 8
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo mình nghĩ
= 4k.k+4k.1 + 8k+8.1+8
= ( 4k .4k ) + ( k .1 ) + 8k + 16
= 16 k2 + k + 8k + 16
2.8 . k2 + k + 8k + 2.8
từ dó => 4k(k+1)+8(k+1)+8
=> ĐPCM
ta thấy\(8⋮8\) (1)
8k(k+2)\(⋮\)8( vì \(8⋮8\) ) (2)
\(\Rightarrow\)để 4k(k+1)+8k(k+2)+8\(⋮\)8
thì 4k(k+1)\(⋮\)8( định lý chia hết của 1 tổng)
mà k(k+1) là tích của 2 số tự nhiên liên tiếp
\(\Rightarrow\)k(k+1)\(⋮\)2
mà 4\(⋮\)4
\(\Rightarrow\)4k(k+1)\(⋮\)2.4
\(\Rightarrow\)4k(k+1)\(⋮\)8 (3)
từ (1);(2) và 3
\(\Rightarrow\)4k(k+1)+8k(k+2)+8\(⋮\)8( định lý chia hết của 1 tổng)
chú ý: định lý chia hết của 1 tổng là khi cả 3 số hạng cùng chia hết cho 1 số thì tổng đó chia hết cho số đó.
\(=\left(9-1-4k\right)\left(9+1+4k\right)\)
\(=\left(8-4k\right)\left(4k+10\right)\)
\(=8\left(2-k\right)\left(2k+5\right)⋮8\)
10^k + 8^k + 6^8 là chẵn
9^k + 7^k + 5^k là lẻ
mà chẵn - lẻ là lẻ
=> hiệu trên là lẻ
tương tư thì câu 2 cũng giải như vậy
Ta có: 45 + 99 + 180 chia hết cho 9
Vì 45 chia hết cho 9
99 chia hết cho 9
180 chia hết cho 9
1995 chia hết cho 3 (1)
1994 chia hết cho 2 (2)
1996 chia hết cho 4 (3)
Từ (1) ; (2) ; (3) => 1994.1995.1996 chia hết cho 3.2.4 = 24