K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 8 2016

\(\left(\frac{x+1}{2\left(x-1\right)}+\frac{3}{x^2-1}-\frac{x+3}{2\left(x+1\right)}\right)\frac{4x^2-4}{5}\)
\(=\left(\frac{x+1}{2\left(x-1\right)}+\frac{3}{\left(x-1\right)\left(x+1\right)}-\frac{x+3}{2\left(x+1\right)}\right)\frac{4x^2-4}{5}\)
\(=\left[\frac{\left(x+1\right)^2}{2\left(x-1\right)\left(x+1\right)}+\frac{6}{2\left(x-1\right)\left(x+1\right)}-\frac{\left(x+3\right)\left(x-1\right)}{2\left(x-1\right)\left(x+1\right)}\right]\frac{4x^2-4}{5}\)
\(=\left(\frac{x^2+2x+1+6-x^2+x-3x+3}{2\left(x-1\right)\left(x+1\right)}\right)\frac{4\left(x^2-1\right)}{5}\)
\(=\frac{10}{2\left(x-1\right) \left(x+1\right)}.\frac{4\left(x-1\right)\left(x+1\right)}{5}\)
\(=4\)
Vậy giá trị của biểu thức là 4

10 tháng 2 2016

http://www.cut-the-knot.org/Generalization/inequality.shtml

17 tháng 5 2016

\(A=\frac{3}{4}.\frac{8}{9}.\frac{15}{16}...\frac{399}{400}\Rightarrow A=\frac{1.3}{2.2}.\frac{2.4}{3.3}.\frac{3.5}{4.4}...\frac{19.21}{20.20}\Rightarrow\frac{1.2.3...19}{2.3.4...20}.\frac{3.4.5...21}{2.3.4...20}\) \(\Rightarrow A=\frac{1}{20}.\frac{21}{2}=\frac{21}{40}\)

18 tháng 5 2016

Sửa đê, toán 6.

28 tháng 10 2014

xin lỗi em mới lớp 8 ko trả lời dc

21 tháng 7 2016

kết bạn nhé

21 tháng 7 2016

bn gửi nhé

23 tháng 8 2019

\(P=\frac{x\sqrt{x}-8}{x+2\sqrt{x}+4}+3\left(1-\sqrt{x}\right).\)

\(=\frac{\sqrt{x^3}-2^3}{x+2\sqrt{x}+4}+3-3\sqrt{x}\)

\(=\frac{\left(\sqrt{x}-2\right)\left(x+2\sqrt{x}+4\right)}{x+2\sqrt{x}+4}+3-3\sqrt{x}\)

\(=\sqrt{x}-2+3-3\sqrt{x}=-2\sqrt{x}+1\)

\(Q=\frac{2P}{1-P}=\frac{2\left(-2\sqrt{x}+1\right)}{1-\left(-2\sqrt{x}+1\right)}\)

\(=\frac{-4\sqrt{x}+2}{1+2\sqrt{x}-1}=\frac{-2\sqrt{x}+1}{\sqrt{x}}\)

\(=\frac{-2\sqrt{x}}{\sqrt{x}}+\frac{1}{\sqrt{x}}=-2+\frac{1}{\sqrt{x}}\)

\(Q\in Z\Leftrightarrow-2+\frac{1}{\sqrt{x}}\in Z\Rightarrow\frac{1}{\sqrt{x}}\in Z\)

\(\Rightarrow1\)\(⋮\)\(\sqrt{x}\)\(\Rightarrow\sqrt{x}\inƯ_1\)

\(\Rightarrow\orbr{\begin{cases}\sqrt{x}=1\\\sqrt{x}=-1\end{cases}\Rightarrow\orbr{\begin{cases}x=1\\x\in\varnothing\end{cases}}}\)

Vậy \(Q\in Z\Leftrightarrow x=1\)