K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 12 2018
Gọi d€ƯC(2n+3;4n+1) =>2n+3:d=>2(2n+1):d =>4n+1:d=>4n+1:d =>[2(2n+3)-4n+1]:d =>(4n+6-4n+1):d =>5:d =>d€Ư(5)={1;5} Với d=5=>2n+3:5 =>(2n+3-5):5 =>(2n-2):5 =>2(n-1):5 =>n-1:5(vì 2 không chia hết cho 5) =>n-1=5k(k€N*) =>n=5k-1 Thay n=5k+1 vào 4n+1=4.(5k+1)+1 =20k+4+1 =20k+5 Vậy n khác 5k+1 thì 2n+3 và 4n+1 là nguyên tố cùng nhau
24 tháng 7 2016

Tìm số tự nhiên n để 2n+3 và 4n + 1 là hai số nguyên tố cùng nhau

Toán lớp 6 Ước chung

23 tháng 11 2016

Gọi d e ƯC ( 2n+3;4n+1)

suy ra:

(2n+3) chia hết cho d , suy ra 4.(2n+3) chia hết cho d

                                  suy ra 8n+3 chia hết cho d

suy ra

(4n+1) chia hết cho d , suy ra: 2.(4n+1) chia hết cho d

                                  suy ra: 8n+1 chia hết cho d

suy ra : (8n+3)-(8n+1) chia hết cho d

suy ra: 2 chia hết cho d

suy ra : d thuộc Ư(2)

suy ra : d thuộc {1,2}

vì d thuộc Ư(2n+3) mà 2n+3 là số lẻ nên d là số lẻ

suy ra: d khác 2 suy ra: d=1, suy ra: ƯCLN (2n+3;4n+1) = 1

vậy : 2n+3 và 4n+1 là 2 số nguyên tố cùng nhau

11 tháng 1 2017

gọi ước chung lớn nhất của 4n + 3 và 2n + 3 là d 

ta có 2n + 3 chia hết cho d 

=> 2( 2n + 3) chia hết cho d 

=> 4n + 6 chia hết cho d 

=> ( 4n + 6 ) - ( 4n + 3) chia hết cho d 

=> 4n + 6 - 4n - 3 chia hết cho d 

=> 3 chia hết cho d 

=> d = { 1,3}

để 2 số nguyên tố cùng nhau thì 2 số không chia hết cho 3 

=> n = 1,... t=B tự tìm nhé

10 tháng 11 2016

Giả sử \(7n+13\)\(2n+4\) cùng chia hết cho số nguyên tố d

Ta có: \(7\left(2n+4\right)-2\left(7n+13\right)⋮d\rightarrow2⋮d\rightarrow d\in\left\{1;2\right\}\)

Để \(\left(7n+13;2n+4\right)=1\) thì \(d\ne2\)

Ta có: \(2n+4\) luôn chia hết cho \(2\) khi đó \(7n+13\) không chia hết cho \(2\) nếu \(7n\) chia hết cho \(3\) hay \(n\) chia hết cho \(2.\)
=> Với \(n\) chẵn thì thì \(7n+13\)\(2n+4\) là hai số nguyên tố cùng nhau

 
9 tháng 3 2017

Đặt (7n + 13; 2n + 4) = d

\(\Rightarrow\) \(\left\{{}\begin{matrix}7n+13⋮d\\2n+4⋮d\end{matrix}\right.\) \(\Rightarrow\) \(\left\{{}\begin{matrix}2\left(7n+13\right)⋮d\\7\left(2n+4\right)⋮d\end{matrix}\right.\) \(\Rightarrow\) \(\left\{{}\begin{matrix}14n+26⋮d\\14n+28⋮d\end{matrix}\right.\)

\(\Rightarrow\) (14n + 28) - (14n + 26) \(⋮\) d

\(\Rightarrow\) 2 \(⋮\) d

\(\Rightarrow\) d \(\in\) Ư(2) = \(\left\{1;2\right\}\)

mà 7n + 13 \(⋮̸\)2

\(\Rightarrow\) d = 1

Vậy (7n + 13; 2n + 4) = 1

11 tháng 11 2016

a,

Gọi UCLN của a, b là d

Ta có:

a chia hết cho d => n+1 chia hết cho d

b chia hết cho d=> n + 6 chia hết cho d

=> n + 6 - (n+1) chia hết cho d

=>5 chia hết cho d

Mà d lớn nhất

=> d = 5

Vậy UCLN của a, b = 5

b,

Gọi UCLN của a, b là d

Ta có:

a chia hết cho d =>2n+1 chia hết cho d

b chia hết cho d=> n + 4 chia hết cho d => 2(n+4) chia hết cho d=>2n+8 chia hết cho d

=>2n + 8 - (2n+1)chia hết cho d

=7 chia hết cho d

Mà d lớn nhất

=> d = 7

Vậy UCLN của a, b = 7

c,

Gọi UCLN của a, b là d

Ta có:

a chia hết cho d =>4n+3 chia hết cho d=>5(4n+3) chia hết cho d=>20n + 15 chia hết cho d

b chia hết cho d=>5n + 1 chia hết cho d=>4(5n+1) chia hết cho d=>20n+4 chia hết cho d

=>20 + 15 - (20n+4) chia hết cho d

=>11 chia hết cho d

Mà d lớn nhất

=> d = 11

Vậy UCLN của a, b = 11