cho đường tròn tâm o bán kính r và một điểm M nằm ngoài đường tròn . Qua M kẻ tiếp tuyến MA với đường tròn ( A là tiếp điểm ) . Tia Mx là phân giác của góc AMO cắt đường tròn (O;R) tại hai điểm C và D ( C nằm giữa 2 điểm M và D ). Gọi I là trung điểm của dây CD ,kẻ AH vuông góc với MO tại H.
a) Tính OH, OM theo R ;
b) gọi E là trung điểm của OM. Chứng minh điểm M,A,I,O cùng thuộc một đường tròn ;
c) gọi K là giao điểm của OE và HA. Chứng minh rằng KC là tiếp tuyến của (O;R)
a: OH*OM=OA^2=R^2
b: ΔOCD cân tại O
mà OI là đường trung tuyến
nên OI vuông góc với CD
Xét tứ giác OIAM có
góc OIM=góc OAM=90 độ
nên OIAM là tứ giác nội tiếp
c: Xét ΔOHK vuông tại H và ΔOIM vuông tại I có
góc HOK chung
Do đo: ΔOHK đồng dạng với ΔOIM
=>OH/OI=OK/OM
=>OI*OK=OH*OM=R^2=OC^2
mà CI vuông góc với OK
nên ΔOCK vuông tại C
=>KC là tiếp tuyến của (O)