Cho B = 5 + 5^2 + 5^3+ ............ +5^2021
Chứng tỏ b+ 8 ko bằng số chính phương
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=5+5^2+5^3+...+5^{2021}\)
\(5B=5^2+5^3+5^4+...+5^{2022}\)
\(5B-B=\left(5^2+5^3+...+5^{2022}\right)-\left(5+5^2+5^3+...+5^{2021}\right)\)
\(4B=5^{2022}-5\)
\(B=\frac{5^{2022}-5}{4}\)
\(B+8=\frac{5^{2022}-5}{4}+8=\frac{5^{2022}+27}{4}\)
Nếu \(B+8=n^2\left(n\inℕ^∗\right)\Rightarrow5^{2022}+27=4n^2=\left(2n\right)^2\)là bình phương một số tự nhiên.
Mà ta có: \(5^{2022}< 5^{2022}+27< 5^{2022}+2.5^{1011}+1=\left(5^{2022}+1\right)^2\)
Do đó \(5^{2022}+27\)không là bình phương một số tự nhiên.
Suy ra đpcm.
a) Số số hàng trong tổng A là:
\(\frac{\left(2n+1-1\right)}{2}+1=n+1\)
\(A=\frac{\left(2n+1+1\right)\left(n+1\right)}{2}=\left(n+1\right)\left(n+1\right)=\left(n+1\right)^2\)
Do n là số tự nhiên nên A là số chính phương.
b) Số số hạng trong tổng B là:
\(\frac{2n-2}{2}+1=n\)
\(B=\frac{\left(2n+2\right).n}{2}=\left(n+1\right)n\)
Vậy số B không thể là số chính phương.
Ta có : B = 33 + 34 +35 +...+32019 + 32020
3B = 34 + 35 + 36 +...+32020 + 32021
Lấy 3B - B = (34 + 35 + 36 +...+32020 + 32021) - (33 + 34 +35 +...+32019 + 32020)
2B = 32021 - 33
B = (32021 - 33) : 2
Ta có 32021= 32020 . 3
= 3505.4. 3
= ....1 . 3
= ....3
lại có 33 = ...7
=> (32021 - 33) = ...3 - ...7 = ...6
=> (32021 - 33) : 2 = ...6 : 2 = ....3 hoặc = ....8
=> B không là số chính phương
a) Ta có: M = 5 + 5 2 + 5 3 + … + 5 80 = 5 + 5 2 + 5 3 + … + 5 80 = (5 + 5 2) + (53 + 5 4) + (55 + 5 6) +... + (579 + 5 80) = (5 + 5 2) + 5 2 .(5 + 5 2) + 5 4(5 + 5 2) + ... + 5 78(5 + 5 2) = 30 + 30.52 + 30.54 + ... + 30.578 = 30 (1+ 5 2 + 5 4 + ... + 5 78) 30 b) Ta thấy : M = 5 + 5 2 + 5 3 + … + 5 80 chia hết cho số nguyên tố 5. Mặt khác, do: 5 2+ 5 3 + … + 5 80 chia hết cho 5 2 (vì tất cả các số hạng đều chia hết cho 5 2) M = 5 + 5 2 + 5 3 + … + 5 80 không chia hết cho 5 2 (do 5 không chia hết cho 5 2) VnDoc - Tải tài liệu, văn bản pháp luật, biểu mẫu miễn phí M chia hết cho 5 nhưng không chia hết cho 5 2 M không phải là số chính phương. (Vì số chính phương chia hết cho số nguyên tố p thì chia hết cho p 2).
Đúng ko???
a. ta có A chia hết cho 5 và A >5 thế nên A là hợp số
b. dễ thấy A không chia hết cho 5 vì :
\(A=5+25\left(1+5+5^2+..+5^{98}\right)\)
A chia hết cho 5 mà không chia hết cho 25, nên A không là số chính phương
a) A có số số hạng là: (2n+1-1) :2 +1 = n+1 (số)
=> \(A=\frac{\left(2n+1+1\right).\left(n+1\right)}{2}=\frac{\left(2n+2\right).\left(n+1\right)}{2}=\frac{2\left(n+1\right)\left(n+1\right)}{2}\)
\(=\left(n+1\right).\left(n+1\right)=\left(n+1\right)^2\)
=> A là số chính phương
b) B có số số hạng là : (2n-2):2+1= n (số)
=> \(B=\frac{\left(2n+2\right).n}{2}=\frac{2\left(n+1\right).n}{2}=\left(n+1\right).n\)
=> B không là số chính phương.
A có số số hạng là:
(2n+1-1):2+1=n+1(số)
=>\(\frac{\left(2n+1+1\right).\left(n+1\right)}{2}=\frac{\left(2n+2\right).\left(n+1\right)}{2}=\frac{2\left(n+1\right)\left(n+1\right)}{2}\)
\(=\left(n+1\right).\left(n+1\right)=\left(n+1\right)^2\)
=>A là số chính phương
M = 5 + 52 + 53 + ... + 52012.
= ( 5+1 ).52 + ( 5+1 ). 53 +...+( 5+1 ). 5 80
=6. 52 + 6. 53 + ...+ 6. 5 80
=\(6\).52.53x...x5 80
Vậy M chia hết cho 6.
`B=5+5^2+5^3+....+5^2021`
`=>5B=5^2+5^3+5^4+....+5^2022`
`=>5B-B=4B=5^2022-5`
`=>B=(5^2022-5)/4`
`=>B+8=(5^2022+27)/4`
Vì `5^2022` có tận cùng là 5
`=>5^2022+27` có tận cùng là 2
`=>B` không phải là scp