K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 12 2018

\(P=x^2y^2+1+1+\frac{1}{x^2y^2}=x^2y^2+2+\frac{1}{256x^2y^2}+\frac{255}{256x^2y^2}\)

\(\ge x^2y^2+\frac{1}{256x^2y^2}+2+\frac{255}{256.\left[\frac{\left(x+y\right)^2}{4}\right]^2}\ge2\sqrt{x^2y^2.\frac{1}{256x^2y^2}}+2+\frac{255}{256.\frac{1}{16}}\)

\(=\frac{1}{8}+2+\frac{255}{16}=\frac{289}{16}\)

Dấu "=" xảy ra khi \(x=y=\frac{1}{2}\)

11 tháng 1 2021

27 tháng 4 2021

\(P=\left(x^2+\frac{1}{y^2}\right)\left(y^2+\frac{1}{x^2}\right)\)

\(=x^2y^2+\frac{1}{x^2y^2}+2\)

Áp dụng BĐT Cô-si cho 2 số không âm ta có:

\(x^2y^2+\frac{1}{256x^2y^2}\ge2\sqrt{\frac{x^2y^2}{256x^2y^2}}=\frac{1}{8}\)

\(\frac{255}{256x^2y^2}\ge\frac{255}{256\cdot\frac{\left(x+y\right)^4}{16}}=\frac{255}{256\cdot\frac{1}{16}}=\frac{255}{16}\)

\(\Rightarrow P\ge\frac{1}{8}+\frac{255}{16}+2\ge\frac{289}{16}\) 

Đẳng thức xảy ra khi và chỉ khi \(x=y=\frac{1}{2}\)

13 tháng 3 2017

cac ban tra loi di

21 tháng 4 2019

1/y thành 1/x nhé

H = x2 + 2y2 + 1/x + 24/y

H = ( x2 + 1 ) + 2 ( y2 + 4 ) + 1/x + 24/y

\(\ge\)2x + 8y + 1/x + 24/y = ( x + 1/x ) + ( 6y + 24y ) x + 2y - 9

\(\ge\)2 + 24 + 5 - 9 = 22

Dấu " = " xảy ra khi x = 1 ; y = 2

2 tháng 5 2020

\(P=\frac{1}{x^2+y^2}+\frac{2}{xy}+4xy=\left(\frac{1}{x^2+y^2}+\frac{1}{2xy}\right)+\left(\frac{1}{4xy}+4xy\right)+\frac{5}{4xy}\)

\(\ge\frac{4}{x^2+y^2+2xy}+2\sqrt{\frac{1}{4xy}.4xy}+\frac{5}{4.\frac{\left(x+y\right)^2}{4}}\)

\(=4+2+5=11\)

Dấu "=" xảy ra khi x = y = \(\frac{1}{2}\)

4 tháng 5 2020

số gạo còn lại là 

3/3-1/3=2/3

dáp số 2/3