Cho b = 5+5^2+5^3+...+5^2021 chứng tỏ b+8 ko thể là bình phương của 1 số tự nhiên
trả lời cho mình gấp
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
B=5+52+53+...+52021
5B= 52+53+54+...+52022.
5B-B=(52-52) + (53-53) + (54-54) + ... + (52022-5)
4B= 0 + 0 + 0 + ... + 52022-5
4B= 52022-5
⇒ B=\(\frac{5^{2022}-5}{4}\)
------------------
52022 = ...5.
...5 - 5 = ...0
Mà số có c/s tận cùng là 0 : 4 thì sẽ ra số có tận cùng là 0 hoặc 5.
Vậy: B có c/s tận cùng là 0 hoặc 5.
------------------
B có chữ số tận cùng là ...0 + ...8 = ...8 (Mà số chính phương không có tận cùng là 8) (1)
B có chữ số tận cùng là ...5 + ...8 = ...3 (Mà số chính phương không có tận cùng là 3) (2)
\(\Rightarrow\)B không phải là số chính phương.
Xong rùi đó. Dễ mà. 😊
\(A=4+2^2+2^3+...+2^{2005}\)
\(2A=4+2^2+2^3+...+2^{2006}\)
\(2A-A=\left(4+2^2+2^3+...+2^{2006}\right)-\left(4+2^2+2^3+...+2^{2005}\right)\)
\(A=4+2^2+2^3+...+2^{2006}-4-2^2-2^3-...-2^{2005}\)
\(A=2^{2006}\)
Vậy A là 1 luỹ thừa của cơ số 2
\(B=5+5^2+...+5^{2021}\)
\(5B=5^2+5^3+...+5^{2022}\)
\(5B-B=\left(5^2+5^3+...+5^{2022}\right)-\left(5+5^2+...+5^{2021}\right)\)
\(4B=5^{2022}-5\)
\(B=\frac{5^{2022}-5}{4}\)
\(B+8=\frac{5^{2022}-5}{4}+8\)
\(B+8=\frac{5^{2022}-5}{4}+\frac{32}{4}\)
\(B+8=\frac{5^{2022}-5+32}{4}\)
\(B+8=\frac{5^{2022}+27}{4}\)
=> B + 8 k thể là số b/ph của 1 số tn
b) Ta có :
316 - 1 = ( 32 )8 - 1 = 98 - 1
vì 98 có tận cùng là 1 nên 98 - 1 = ( ....1 ) - 1 = ....0 \(⋮\)2,5
\(\Rightarrow\)316 - 1 \(⋮\)2,5
sorry : nãy đăng lên mà quên làm bài b
Ta có :
32 . 54 . 72
= 32 . ( 52 )4 . 72
= ( 3 . 52 . 7 )2
vì 3 . 52 . 8 là số tự nhiên nên 32 . 54 . 72 là bình phương của 1 số tự nhiên
`B=5+5^2+5^3+....+5^2021`
`=>5B=5^2+5^3+5^4+....+5^2022`
`=>5B-B=4B=5^2022-5`
`=>B=(5^2022-5)/4`
`=>B+8=(5^2022+27)/4`
Vì `5^2022` có tận cùng là 5
`=>5^2022+27` có tận cùng là 2
`=>B` không phải là scp
a: Số số hạng của A là:
(2n+1-1):2+1=n+1(số)
Số số hạng của B là;
(2n-2):2+1=n(số)
b: A=(2n+1+1)(n+1)/2=(n+1)^2 là số chính phương
c: C=(2n+2)*n/2=n(n+1) chỉ có thể là số chính phương khi n=0 thôi
\(B=5+5^2+5^3+...+5^{2021}\)
\(5B=5^2+5^3+5^4+...+5^{2022}\)
\(5B-B=\left(5^2+5^3+...+5^{2022}\right)-\left(5+5^2+5^3+...+5^{2021}\right)\)
\(4B=5^{2022}-5\)
\(B=\frac{5^{2022}-5}{4}\)
\(B+8=\frac{5^{2022}-5}{4}+8=\frac{5^{2022}+27}{4}\)
Nếu \(B+8=n^2\left(n\inℕ^∗\right)\Rightarrow5^{2022}+27=4n^2=\left(2n\right)^2\)là bình phương một số tự nhiên.
Mà ta có: \(5^{2022}< 5^{2022}+27< 5^{2022}+2.5^{1011}+1=\left(5^{2022}+1\right)^2\)
Do đó \(5^{2022}+27\)không là bình phương một số tự nhiên.
Suy ra đpcm.
b) B= 5 + 52 +53 +...+ 52021
B có 2021 số hạng. Mỗi số hạng đều có tận cùng là 5( do lũy thừa cơ số 5 cos chữ số tận cùng là 5) nên B có chữ số tận cùng là 5. Vậy B+8 có chữ số tận cùng là 3
Mà bình phương của 1 số tự nhiên phải có chữ số tận cùng là 0,1,4,5,6,9.