Cho 1/c = 1/2 (1/a + 1/b (với a,b,c không bằng 0 , b không bằng c) chứng minh rằng a/b = a-c/c-b
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu hỏi của nguyen thanh chuc - Toán lớp 7 - Học toán với OnlineMath
3. abc > 0 nên trog 3 số phải có ít nhất 1 số dương.
Vì nếu giả sử cả 3 số đều âm => abc < 0 => trái giả thiết
Vậy nên phải có ít nhất 1 số dương
Không mất tính tổng quát, giả sử a > 0
mà abc > 0 => bc > 0
Nếu b < 0, c < 0:
=> b + c < 0
Từ gt: a + b + c < 0
=> b + c > - a
=> (b + c)^2 < -a(b + c) (vì b + c < 0)
<=> b^2 + 2bc + c^2 < -ab - ac
<=> ab + bc + ca < -b^2 - bc - c^2
<=> ab + bc + ca < - (b^2 + bc + c^2)
ta có:
b^2 + c^2 >= 0
mà bc > 0 => b^2 + bc + c^2 > 0
=> - (b^2 + bc + c^2) < 0
=> ab + bc + ca < 0 (vô lý)
trái gt: ab + bc + ca > 0
Vậy b > 0 và c >0
=> cả 3 số a, b, c > 0
1.a, Ta có: \(\left(a+b\right)^2\ge4a>0\)
\(\left(b+c\right)^2\ge4b>0\)
\(\left(a+c\right)^2\ge4c>0\)
\(\Rightarrow\left[\left(a+b\right)\left(b+c\right)\left(a+c\right)\right]^2\ge64abc\)
Mà abc=1
\(\Rightarrow\left[\left(a+b\right)\left(b+c\right)\left(a+c\right)\right]^2\ge64\)
\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(a+c\right)\ge8\left(đpcm\right)\)
Không mất tính tổng quát giả sử \(c=max\left\{a,b,c\right\}\)
\(\Rightarrow2c\ge a+b\)
\(\Rightarrow c\ge\frac{a+b}{2}\)
Từ giả thiết \(\Rightarrow a,b\le1\)
\(\Rightarrow ab\le1\)( *)
Đặt \(P=\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}-\frac{5}{2}\)
\(=\frac{1}{a+b}+\frac{1}{b+\frac{1-ab}{a+b}}+\frac{1}{a+\frac{1-ab}{a+b}}-\frac{5}{2}\)
Đặt \(S=\frac{1}{a+b+\frac{1}{a+b}}+a+b+\frac{1}{a+b}-\frac{5}{2}\)
Xét hiệu \(P-S=\)\(\frac{1}{a+b}+\frac{1}{b+\frac{1-ab}{a+b}}+\frac{1}{a+\frac{1-ab}{a+b}}-\frac{5}{2}-\)\(-\frac{1}{a+b+\frac{1}{a+b}}-a-b-\frac{1}{a+b}+\frac{5}{2}\)
\(=\frac{1}{\frac{ab+b^2+1-ab}{a+b}}+\frac{1}{\frac{a^2+ab+1-ab}{a+b}}-\frac{1}{\frac{\left(a+\right)^2+1}{a+b}}-\left(a+b\right)\)
\(=\frac{a+b}{b^2+1}+\frac{a+b}{c^2+1}-\left(a+b\right)\left[1+\frac{1}{1+\left(a+b\right)^2}\right]\)
Ta sẽ chứng minh \(\frac{a+b}{b^2+1}+\frac{a+b}{c^2+1}-\left(a+b\right)\left[1+\frac{1}{1+\left(a+b\right)^2}\right]\ge0\)
\(\Leftrightarrow\frac{a+b}{b^2+1}+\frac{a+b}{c^2+1}\ge\left(a+b\right)\left[1+\frac{1}{1+\left(a+b\right)^2}\right]\)
\(\Leftrightarrow\frac{1}{b^2+1}+\frac{1}{c^2+1}\ge1+\frac{1}{1+\left(a+b\right)^2}\)
\(\Leftrightarrow\frac{2+a^2+b^2}{\left(1+a^2\right)\left(1+b^2\right)}\ge\frac{2+\left(a+b\right)^2}{1+\left(a+b\right)^2}\)
\(\Rightarrow\left(2+b^2+a^2\right)\left[1+\left(a+b\right)^2\right]\ge\left[2+\left(a+b\right)^2\right]\left(1+a^2\right)\left(1+b^2\right)\)
\(\Leftrightarrow2+2\left(a+b\right)^2+\left(a+b\right)^2\left(a^2+b^2\right)+a^2+b^2\ge\left[2+\left(a+b\right)^2\right]\left(1+a^2+b^2+a^2b^2\right)\)
\(\Leftrightarrow2+2\left(a+b\right)^2+\left(a+b\right)^2\left(a^2+b^2\right)+a^2+b^2-2a^2b^2-\left(a+b\right)^2\left(a^2+b^2\right)-\left(a+b\right)^2a^2b^2\)\(-2-2\left(a^2+b^2\right)-\left(a+b^2\right)\ge0\)
\(\Leftrightarrow-2a^2b^2-\left(a+b\right)^2a^2b^2+a^2+b^2-\left(a+b\right)^2\ge0\)
\(\Leftrightarrow ab\left[ab\left(a+b\right)^2+2ab-2\right]\le0\)
\(\Leftrightarrow ab\left(a+b\right)^2+2ab-2\le0\)( do a,b \(\ge0\))
\(\Leftrightarrow ab\left(a+b\right)^2\le2\left(1-ab\right)\)
\(\Leftrightarrow ab\left(a+b\right)^2\le2c\left(a+b\right)\) (1)
Mà \(c\ge\frac{a+b}{2}\)
\(\Rightarrow2c\left(a+b\right)\ge\left(a+b\right)^2\)
Ta có: \(\left(a+b\right)^2\ge ab\left(a+b\right)^2\)
\(\Leftrightarrow\left(a+b\right)^2\left(1-ab\right)\ge0\)( đúng do (*) )
\(\Rightarrow\left(1\right)\)đúng
\(\Rightarrow P-S\ge0\)
\(\Rightarrow P\ge S\)
Ta phải chứng minh \(S\ge0\)
\(\Leftrightarrow\frac{1}{a+b+\frac{1}{a+b}}+a+b+\frac{1}{a+b}\ge\frac{5}{2}\)
\(\Leftrightarrow\frac{a+b}{1+\left(a+b\right)^2}+\frac{1+\left(a+b\right)^2}{a+b}\ge\frac{5}{2}\) (2)
Đặt \(x=\frac{1+\left(a+b\right)^2}{a+b}\)
Ta có: \(1+\left(a+b\right)^2\ge2\left(a+b\right)\)
\(\Leftrightarrow\left(a+b-1\right)^2\ge0\)( đúng )
\(\Rightarrow x=\frac{1+\left(a+b\right)^2}{a+b}\ge2\)
=> (2) có dạng \(x+\frac{1}{x}\ge\frac{5}{2}\)
\(\Leftrightarrow2x^2-5x+2\ge0\)
\(\Leftrightarrow\left(2x-1\right)\left(x-2\right)\ge0\)( đúng )
\(\Rightarrow S\ge0\)mà \(P\ge S\)
\(\Rightarrow P\ge0\)
\(\Leftrightarrow\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\ge\frac{5}{2}\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}a+b=1\\ab+bc+ca=1\\ab\left[ab\left(a+b\right)^2+2ab-2\right]=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}a=c=1;b=0\\b=c=1;a=0\end{cases}}\)
3.1
Xét hiệu :
\(\left(\dfrac{a+b}{2}\right)^2-ab=\dfrac{a^2+2ab+b^2}{4}-\dfrac{4ab}{4}\)
\(=\dfrac{a^2-2ab+b^2}{4}=\dfrac{\left(a-b\right)^2}{4}\ge0\forall a,b\in R\)
Vậy \(\left(\dfrac{a+b}{2}\right)^2\ge ab,\forall a,b\in R\)
Dấu bằng xảy ra : \(\Leftrightarrow a=b\)
3.2
Áp dụng kết quả của câu 3.1 vào câu 3.2 ta được:
\(\left(a+b+c\right)^2=[a+\left(b+c\right)]^2\ge4a\left(b+c\right)\)
Mà : \(a+b+c=1\left(gt\right)\)
nên : \(1\ge4a\left(b+c\right)\)
\(\Leftrightarrow b+c\ge4a\left(b+c\right)^2\) ( vì a,b,c không âm nên b+c không âm )
Mà : \(\left(b+c\right)^2\ge4bc\Leftrightarrow\left(b-c\right)^2\ge0,\forall b,c\in N\)
\(\Rightarrow b+c\ge16abc\)
Dấu bằng xảy ra : \(\Leftrightarrow\left\{{}\begin{matrix}a=b+c\\b=c\end{matrix}\right.\Leftrightarrow b=c=\dfrac{1}{4};a=\dfrac{1}{2}\)
Bài toán ghép cơ học không có gì mới
Ta chứng minh 2 bổ đề:
\(\frac{1}{4a^2+b^2+c^2}+\frac{1}{4b^2+c^2+a^2}+\frac{1}{4c^2+a^2+b^2}\le\frac{9}{2\left(a+b+c\right)^2}\left(1\right)\)
\(\frac{9}{2\left(a+b+c\right)^2}\le\frac{1}{2\left(a^2+b^2+c^2\right)}+\frac{1}{ab+bc+ca}\left(2\right)\)
Bất đẳng thức ( 2 ) tương đương với:
\(\frac{\left(a+b+c\right)^2}{a^2+b^2+c^2}+\frac{2\left(a+b+c\right)^2}{ab+bc+ca}\ge9\)
\(\Leftrightarrow\frac{2\left(ab+bc+ca\right)}{a^2+b^2+c^2}+1+\frac{2\left(a^2+b^2+c^2\right)}{ab+bc+ca}+4\ge9\)
\(\Leftrightarrow\frac{ab+bc+ca}{a^2+b^2+c^2}+\frac{a^2+b^2+c^2}{ab+bc+ca}\ge2\)( Luôn đúng theo BĐT AM - GM )
Bất đẳng thức ( 1 ) tương đương với:
\(\left(a+b+c\right)^2\left(\frac{1}{4a^2+b^2+c^2}+\frac{1}{4b^2+c^2+a^2}+\frac{1}{4c^2+a^2+b^2}\right)\le\frac{9}{2}\)
Sử dụng Titu's Lemma ta dễ có:
\(\frac{\left(a+b+c\right)^2}{4a^2+b^2+c^2}=\frac{\left(a+b+c\right)^2}{2a^2+\left(a^2+b^2\right)+\left(a^2+c^2\right)}\le\frac{a^2}{2a^2}+\frac{b^2}{a^2+b^2}+\frac{c^2}{a^2+c^2}\)
Một cách tương tự khi đó:
\(LHS\le\frac{1}{2}+\frac{1}{2}+\frac{1}{2}+\Sigma\left(\frac{b^2}{a^2+b^2}+\frac{a^2}{a^2+b^2}\right)=\frac{3}{2}+3=\frac{9}{2}\left(đpcm\right)\)
Vậy ta có đpcm
Áp dụng BĐT Cosi cho 2 số không âm 1-a và 1-c có:
4(1-a)(1-c) =<(1-a+1-c)^2=(1+b)^2
Ta có: 4(1-a)(1-b)(1-c)=<(1+b)^2(1-b)=(1-b^2)(1+b)=<1+b=a+2b+c(đpcm)
Dấu = xảy ra khi b=0;a=c=1/2
Câu hỏi của nguyen thanh chuc - Toán lớp 7 - Học toán với OnlineMath