tính nhanh:
\(\frac{\left(100x44x50x64\right)x\left(37414,8:1000+2242,52:100\right)}{16x14,96x25x\left(27x38+19x146\right)}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A= (100x44+50x64)x(37414,8:1000+2242,52:100)
A = 100x(44+32)x(3741,48+2242,52) : 100
=(44+32)x(3741,48+2242,52)
=76x5984=454784
B= (16x14,96x25)x(27x38+19x146)
= 5984x6x(171+379)
=5984x550=3291200
Đề??? hình như sai, xem mk ghi như z có sai ko? nếu có thì nói mk nhé! ( để sửa lại)
ta có: \(A=\left(100\times44+50\times64\right)\times\left(37414,8:1000+2242,52:1000\right)\)
\(A=\left(100\times44+50\times2\times32\right)\times\left(37414,8\times\frac{1}{1000}+2242,52\times\frac{1}{1000}\right)\)
\(A=\left[100\times\left(44+32\right)\right]\times\left[\frac{1}{1000}\times\left(37414,8+2242,52\right)\right]\)
\(A=100\times\frac{1}{1000}\times\left(44+32\right)\times\left(37414,8+2242,52\right)\)
\(A=\frac{1}{10}\times76\times39657,32=301395,632\)
\(B=\left(16\times14,96\times25\right)\times\left(27\times38+19\times146\right)\)
\(B=\left(400\times14,96\right)\times\left(27\times2\times19+19\times146\right)\)
\(B=400\times14,96\times[19\times\left(27\times2+146\right)]\)
\(B=400\times14,96\times19\times200=22739200\)
rùi bn tự tính A :B nhé! ( xem đề mk sửa có sai ko)
a) \(A=\left(-1\right)^{2n}.\left(-1\right)^n.\left(-1\right)^{n+1}=\left(-1\right)^{3n+1}\)
b) \(B=\left(10000-1^2\right)\left(10000-2^2\right).........\left(10000-1000^2\right)\)
\(=\left(10000-1^2\right)\left(10000-2^2\right)......\left(10000-100^2\right)....\left(10000-1000^2\right)\)
\(=\left(10000-1^2\right)\left(10000-2^2\right).....\left(10000-10000\right).....\left(10000-1000^2\right)=0\)
c) \(C=\left(\frac{1}{125}-\frac{1}{1^3}\right)\left(\frac{1}{125}-\frac{1}{2^3}\right)..........\left(\frac{1}{125}-\frac{1}{25^3}\right)\)
\(=\left(\frac{1}{125}-\frac{1}{1^3}\right)\left(\frac{1}{125}-\frac{1}{2^3}\right).....\left(\frac{1}{125}-\frac{1}{5^3}\right)......\left(\frac{1}{125}-\frac{1}{25^3}\right)\)
\(=\left(\frac{1}{125}-\frac{1}{1^3}\right)\left(\frac{1}{125}-\frac{1}{2^3}\right)........\left(\frac{1}{125}-\frac{1}{125}\right).....\left(\frac{1}{125}-\frac{1}{25^3}\right)=0\)
d) \(D=1999^{\left(1000-1^3\right)\left(1000-2^3\right)........\left(1000-10^3\right)}\)
\(=1999^{\left(1000-1^3\right)\left(1000-2^3\right)........\left(1000-1000\right)}=1999^0=1\)