Cho hình bình hành ABCD có góc D=60o.Kẻ AM vuông góc với CD và CN vuông góc với AB.
a) Tứ giác ANCM là hình gì?Vì sao?
b) Chứng minh: AC,BD,MN đồng quy
c) Tính diện tích tứ giác ANCM, biết AD=2cm, AB=3cm.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a: Xét ΔADN vuông tại N và ΔCBM vuông tại M có
AD=CB
\(\widehat{ADN}=\widehat{CBM}\)
Do đó: ΔADN=ΔCBM
Suy ra: DN=BM
a: Xét ΔADN vuông tại N và ΔCBM vuông tại M có
AD=CB
góc ADN=góc CBM
=>ΔADN=ΔCBM
=>DN=BM và AN=CM
b: Xét tứ giác ANCM có
AN//CM
AN=CM
=>ANCM là hình bình hành
c: gọi O là giao của AC và BD
=>O là trung điểm chung của AC và BD
Xét ΔAKC có AO/AC=AN/AK
nên ON//KC
=>BD//KC
Xét ΔBAK có
BN vừa là đường cao, vừa là trung tuyến
=>ΔBAK cân tại B
=>BA=BK=DC
Xét tứ giác DBCK có
CK//BD
DC=BK
=>DBCK là hình bình hành
Đây không phải câu hỏi linh tinh nha các bạn:
Thay mặt người phân phối chương trình xin tặng chương trình học online số 1 Việt Nam. Sự kiện bắt đầu từ ngày 28/10 đến 1/11
Xin chào các thành viên đang online trên trang. Sự kiện khuyến mãi được tài trợ 500 suất áo chiếc áo đá bóng Việt Nam.Mong tất cả mọi người đã xem vào truy cập sau để nhận thưởng khi xem có 1 bản đăng kí nhận miễn phí : Thời gian có hạn tặng mọi người đã tham gia tích cực -> Không tin các bạn có thể hỏi các CTV nha mình chỉ có quyền thông báo :
Copy cái này hoặc gõ :
https://lazi.vn/quiz/d/16491/nhac-edm-la-loai-nhac-the-loai-gi
mn
a: Xét tứ giác AKCI có
AK//CI
AI//CK
Do đó: AKCI là hình bình hành
a: Xét tứ giác AIME có
\(\widehat{AIM}=\widehat{AEM}=\widehat{EAI}=90^0\)
Do đó: AIME là hình chữ nhật
b: Xét tứ giác ANCM có
I là trung điểm của AC
I là trung điểm của NM
Do đó: ANCM là hình bình hành
mà MA=MC
nên ANCM là hình thoi
c: Để AIME là hình vuông thì AI=AE
hay AB=AC
a) Xét tam giác vuông AMD và tam giác vuông CBN ta có :
\(\widehat{AMD}=\widehat{CNB}=90^o\) ( GT )
\(AD=CB\)( Vì ABCD là hình bình hành )
\(\widehat{ADM}=\widehat{CBN}=60^o\) ( góc đối của hình bình hành ABCD )
Do đó : \(\Delta AMD=\Delta CBN\)( cạnh huyền - góc nhọn )
\(\Rightarrow\hept{\begin{cases}AM=CN\\DM=NB\end{cases}}\)( các cặp cạnh tương ứng )
\(\Rightarrow\hept{\begin{cases}AM=CN\\AN=CM\end{cases}}\) ( vì AB=CD )
=> ANCM là hình bình hành
Xét hình bình hành ANCM ta có :
góc AMC=90 độ
=> AMCN là hình chữ nhật . ( dấu hiệu nhận biết 3 )
b) Ta có O là điểm giao hai đường chéo AC và BD của hình bình hành ABCD .
=> O là trung điểm của AC và BD . (1)
Và ANCM là hình bình hành ( câu a )
=> O là giao điểm của hai đường chéo AC và MN
=> O cũng là trung điểm của MN (2)
Từ (1) và (2)
=> AC , BD và MN đồng quy tại điểm O ( đpcm)