Cho x;y;z đôi 1 khác nhau CM: \(\dfrac{1}{\left(x-y\right)^2}+\dfrac{1}{\left(y-z\right)^2}+\dfrac{1}{\left(z-x\right)^2}\) là bình phương 1 số hữu tỉ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, ta có : x chia hết cho 36
=> x thuộc BC(36,90)
x chia hết cho 90
Vì x nhỏ nhất và x khác 0 => x = BCNN(36,90)
Mà 36= 2^2.3^2 90 = 2.3^2.5
=> BCNN(36,90)= 2^2.3^2.5= 180
=> BC(36,90)=B(180)=(0,180,360,...)
Vì x nhỏ nhất khác 0 =>x=180
a, Ta có : 24 chia hết cho (x-1)
\(\Rightarrow\)\(24⋮x-1\)
\(\Rightarrow\)\(x-1\inƯ\left(24\right)\)
\(\Rightarrow\)\(x-1\in\left\{1;2;3;4;6;8;12;24\right\}\)
\(\Rightarrow\)\(x\in\left\{2;3;4;5;7;9;13;25\right\}\)
Vậy \(x\in\left\{2;3;4;5;7;9;13;25\right\}\)
a. \(\left\{-1;-2;-5;-10\right\}\)
b.\(\left\{-5;0;5\right\}\)
c. UC(-9;15)= \(\left\{-1;-3;1;3\right\}\)
d. BC (-9;12)=\(\left\{0;36;72\right\}\)
Mà 20 <x<50
=> x=36
a, Vì : 24 \(⋮\)x , 36 \(⋮\)x , 160 \(⋮\)x và x lớn nhất
=> x = ƯCLN(24,36,160)
Ta có :
24 = 23 . 3
36 = 22 . 32
160 = 25 . 5
ƯCLN(24,36,160) = 22 = 4
Vậy x = 4
b, Vì 15 \(⋮\)x , 20 \(⋮\)x , 35 \(⋮\)x và x > 3
=> x \(\in\) ƯC(15,20,35)
Ư(15) = { 1;3;5;15 }
Ư(20) = { 1;2;4;5;10;20 }
Ư(35) = { 1;5;7;35 }
ƯC(15,20,35) = { 1;5 }
Mà : x > 3
=> x = 5
Vậy x = 5
c, Vì : 91 \(⋮\)x , 26 \(⋮\)x và 10 < x < 30
=> x \(\in\) ƯC(91,26)
Ư(91) = { 1;7;13;91 }
Ư(26) = { 1;2;13;26 }
ƯC(91,26) = { 1;13 }
Mà : 10 < x < 30
=> x = 13
Vậy x = 13
d, Vì : 10 \(⋮\)( 3x + 1 )
=> 3x + 1 \(\in\) Ư(10)
Mà : Ư(10) = { 1;2;5;10 }
=> 3x + 1 \(\in\) { 1;10 }
+) 3x + 1 = 1 => 3x = 0 => x = 0
+) 3x + 1 = 10 => 3x = 3 => x = 1
Vậy x \(\in\) { 0;1 }
5.
$4x+3\vdots x-2$
$\Rightarrow 4(x-2)+11\vdots x-2$
$\Rightarrow 11\vdots x-2$
$\Rightarrow x-2\in \left\{1; -1; 11; -11\right\}$
$\Rightarrow x\in \left\{3; 1; 13; -9\right\}$
6.
$3x+9\vdots x+2$
$\Rightarrow 3(x+2)+3\vdots x+2$
$\Rightarrow 3\vdots x+2$
$\Rightarrow x+2\in \left\{1; -1; 3; -3\right\}$
$\Rightarrow x\in \left\{-1; -3; 1; -5\right\}$
7.
$3x+16\vdots x+1$
$\Rightarrow 3(x+1)+13\vdots x+1$
$\Rightarrow 13\vdots x+1$
$\Rightarrow x+1\in \left\{1; -1; 13; -13\right\}$
$\Rightarrow x\in\left\{0; -2; 12; -14\right\}$
8.
$4x+69\vdots x+5$
$\Rightarrow 4(x+5)+49\vdots x+5$
$\Rightarrow 49\vdots x+5$
$\Rightarrow x+5\in\left\{1; -1; 7; -7; 49; -49\right\}$
$\Rightarrow x\in \left\{-4; -6; 2; -12; 44; -54\right\}$
** Bổ sung điều kiện $x$ là số nguyên.
1. $x+9\vdots x+7$
$\Rightarrow (x+7)+2\vdots x+7$
$\Rightarrow 2\vdots x+7$
$\Rightarrow x+7\in \left\{1; -1; 2; -2\right\}$
$\Rightarrow x\in \left\{-6; -8; -5; -9\right\}$
2. Làm tương tự câu 1
$\Rightarrow 9\vdots x+1$
3. Làm tương tự câu 1
$\Rightarrow 17\vdots x+2$
4. Làm tương tự câu 1
$\Rightarrow 18\vdots x+2$
a) 15 chia hết cho x, 20 chia hết cho x, 35 chia hết cho x => x thuộc ƯC(15;20;35)
Ư(15)={1;3;5;15)
Ư(20)={1;2;4;5;10;20}
Ư(35)={1;5;7;35}
=> ƯC(15;20;35)={1;5}
Mà x lớn nhất => x=5
b) 36 chia hết cho x, 45 chia hết cho x, 18 chia hết cho x => x thuộc ƯC(36;45;18)
Ư(36)={1;2;3;4;6;9;12;18;36}
Ư(45)={1;3;5;9;15;45}
Ư(18)={1;2;3;6;9;18}
=> ƯC(36;45;18)={1;3;9}
Mà x lớn nhất => x=9
a
Từ đề bài
\(\Rightarrow x\inƯCLN\left(15;20;35\right)\)
\(15=3\cdot5\)
\(20=2^2\cdot5\)
\(35=5\cdot7\)
\(ƯCLN\left(15;20;35\right)=5\)
Vậy x = 5
b
Từ giả thiết đề bài
\(\Rightarrow x\inƯCLN\left(36;45;18\right)\)
\(36=2^2\cdot3^2\)
\(45=3^2\cdot5\)
\(18=2\cdot3^2\)
\(ƯCLN\left(36;45;18\right)=3^2=9\)
Vậy x = 9
Bạn tham khảo tại đây nhé :
https://olm.vn/hoi-dap/tim-kiem?id=663631&subject=1&q=ch%E1%BB%A9ng+minh:1/(x-y)%5E2+1/(y-z)%5E2+1/(z-x)%5E2+l%C3%A0+b%C3%ACnh+ph%C6%B0%C6%A1ng+c%E1%BB%A7a+m%E1%BB%99t+s%E1%BB%91+h%E1%BB%AFu+t%E1%BB%89
\(\left\{{}\begin{matrix}x-y=a\\y-z=b\\z-x=c\end{matrix}\right.\Leftrightarrow a+b+c=0\)
\(\dfrac{1}{\left(x-y\right)^2}+\dfrac{1}{\left(y-z\right)^2}+\dfrac{1}{\left(z-x\right)^2}=\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}\)
\(=\dfrac{a^2b^2+b^2c^2+c^2a^2}{a^2b^2c^2}=\dfrac{\left(ab+bc+ac\right)^2-2abc\left(a+b+c\right)}{a^2b^2c^2}\)
\(=\left(\dfrac{ab+bc+ac}{abc}\right)^2=\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)^2\) là bp 1 số hữu tỉ(đpcm)