K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 12 2018

Hệ \(\hept{\begin{cases}y^2=x^3-4x^2+ax\\x^2=y^3-4y^2+ay\end{cases}}\)

Trừ vế theo vế của 2 pt trên ta đc

\(\left(x-y\right)\left(x^2+y^2+xy-3x-3y+a\right)=0\)(chỗ này mk làm hơi tắt , bn cố hiểu nhé ^^ )

*Nếu x=y thay vào phương trình đầu ta có 

\(x^3-5x^2+ax=0\)

\(\Leftrightarrow x\left(x^2-5x+a\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=y=0\\x^2-5x+a=0\left(1\right)\end{cases}}\)
Để hpt có nghiệm duy nhất x=y=0 thì pt (1) phải vô nghiệm
Pt (1) vô nghiệm \(\Leftrightarrow\Delta< 0\Leftrightarrow a>\frac{25}{4}\)( Cái này chắc bn hiểu :> )
Ta thấy hpt luôn có nghiệm x = y = 0 
* Nếu \(x\ne y\) thì \(x^2+x\left(y-3\right)+y^2-3y+a=0\)và pt này phải vô nghiệm vì đã có 1 cặp nghiệm x=y=0 rồi
Pt này vô nghiệm \(\Leftrightarrow\Delta< 0\)
                            \(\Leftrightarrow\left(y-3\right)^2-4\left(y^2-3y+a\right)< 0\)
                            \(\Leftrightarrow-3y^2+6y+9-4a< 0\)Luôn đúng vì \(a>\frac{25}{4}\)
Vậy để hpt có nghiệm duy nhất thì \(a>\frac{25}{4}\)
P/S: Cách này có lẽ hơi trìu tượng -_- và có thể có 1 vài lỗi sai , mog bn thông cảm ^^
 
3 tháng 12 2018

mk cx lm theo cách này nhưng thay mk kêu sai

20 tháng 1 2021

\(\left\{{}\begin{matrix}x+y=a\\ax+2y=0\end{matrix}\right.\)

Hệ có nghiệm duy nhất khi \(a\ne2\)

17 tháng 1 2019

dạng này thường biến đổi 1 ẩn theo ẩn còn lại bạn rút x theo y hay y theo x cx đk, sau đó biến đổi 2 ẩn x,y theo a rồi xem điều kiện của x,y là ta tìm đc đk của a

27 tháng 1 2020

Làm ra luôn nha.

Ta có:\(\hept{\begin{cases}a\ne0\\a\ne2\end{cases}}\) Hệ có nghiệm: \(\hept{\begin{cases}x=\frac{a^2+4a+5}{a+2}\\y=\frac{a^3+5a^2+4a-5}{a\left(a+2\right)}\end{cases}}\)

Theo đề: Tìm \(a\in Z\) để \(x\in Z\)

\(x=a+2+\frac{1}{a+2}\)

\(a=-1\Rightarrow\) Nghiệm hệ là: \(\left(2;5\right)\)

1: Để hệ có nghiệm duy nhất thì \(\dfrac{m}{m-1}\ne\dfrac{1}{-1}\ne-1\)

=>\(\dfrac{m+m-1}{m-1}\ne0\)

=>\(\dfrac{2m-1}{m-1}\ne0\)

=>\(m\notin\left\{\dfrac{1}{2};1\right\}\)(1)

\(\left\{{}\begin{matrix}mx+y=3\\\left(m-1\right)x-y=7\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}mx+\left(m-1\right)x=3+7\\mx+y=3\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x\left(2m-1\right)=10\\mx+y=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{10}{2m-1}\\y=3-mx=3-\dfrac{10m}{2m-1}=\dfrac{6m-3-10m}{2m-1}\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=\dfrac{10}{2m-1}\\y=\dfrac{-4m-3}{2m-1}\end{matrix}\right.\)

Để x và y trái dấu thì x*y<0

=>\(\dfrac{10}{2m-1}\cdot\dfrac{-4m-3}{2m-1}< 0\)

=>\(\dfrac{10\left(4m+3\right)}{\left(2m-1\right)^2}>0\)

=>4m+3>0

=>m>-3/4

Kết hợp (1), ta được: \(\left\{{}\begin{matrix}m>-\dfrac{3}{4}\\m\notin\left\{\dfrac{1}{2};1\right\}\end{matrix}\right.\)

2: Để x,y là số nguyên thì \(\left\{{}\begin{matrix}10⋮2m-1\\-4m-3⋮2m-1\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}2m-1\in\left\{1;-1;2;-2;5;-5;10;-10\right\}\\-4m+2-5⋮2m-1\end{matrix}\right.\)

=>\(2m-1\in\left\{1;-1;5;-5\right\}\)

=>\(2m\in\left\{2;0;6;-4\right\}\)

=>\(m\in\left\{1;0;3;-2\right\}\)

Kết hợp (1), ta được: \(m\in\left\{0;3;-2\right\}\)