K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 2 2015

cho n=5

ta có \(n^2\)=25

25k:12 dư 1

với n=7

ta có \(n^2\)=49K

49:12 dư 1

Vậy \(n^2\)chia 12 dư1

30 tháng 10 2017

3 tháng 1 2020

a) Nếu n = 3k+1 thì  n 2 = (3k+1)(3k+1) hay  n 2  = 3k(3k+1)+3k+1

Rõ ràng  n 2  chia cho 3 dư 1

Nếu n = 3k+2 thì  n 2 = (3k+2)(3k+2)  hay  n 2 = 3k(3k+2)+2(3k+2) = 3k(3k+2)+6k+3+1 nên  n 2  chia cho 3 dư 1.

b) p là số nguyên tố lớn hơn 3 nên không chia hết cho 3. Vậy p 2  chia cho 3 dư 1 tức là   p 2 = 3 k + 1  do đó  p 2 + 2003 = 3 k + 1 + 2003 = 3k+2004 ⋮ 3

Vậy p 2 + 2003  là hợp số

25 tháng 6 2023

a) n không chia hết cho 3 => n chia cho 3 dư 1 hoặc 2

+) n chia cho 3 dư 1 : n = 3k + 1 => n2 = (3k +1).(3k +1) = 9k2 + 6k + 1 = 3.(3k+ 2k) + 1 => n2 chia cho 3 dư 1

+) n chia cho 3 dư 2 => n = 3k + 2 => n= (3k +2).(3k+2) = 9k2 + 12k + 4 = 3.(3k+ 4k +1) + 1 => n2 chia cho 3 dư 1

Vậy...

b) p là số nguyên tố > 3 => p lẻ => plẻ => p + 2003 chẵn => p2 + 2003 là hợp số

26 tháng 7 2018

Ta có với mọi số nguyên m thì m2 chia cho 5 dư 0 , 1 hoặc 4.

+ Nếu n2 chia cho 5 dư 1 thì   n 2 = 5 k + 1 = > n 2 + 4 = 5 k + 5 ⋮ 5 ; k ∈ N * .

Nên n2+4 không là số nguyên tố

+ Nếu n2 chia cho 5 dư 4 thì  n 2 = 5 k + 4 = > n 2 + 16 = 5 k + 20 ⋮ 5 ; k ∈ N * .

Nên n2+16 không là số nguyên tố.

Vậy n2  5 hay n  ⋮ 5

12 tháng 10 2016

a﴿ n không chia hết cho 3 => n chia cho 3 dư 1 hoặc 2

+﴿ n chia cho 3 dư 1 : n = 3k + 1 => n 2 = ﴾3k +1﴿.﴾3k +1﴿ = 9k 2 + 6k + 1 = 3.﴾3k 2 + 2k﴿ + 1 => n 2 chia cho 3 dư 1

+﴿ n chia cho 3 dư 2 => n = 3k + 2 => n 2 = ﴾3k +2﴿.﴾3k+2﴿ = 9k 2 + 12k + 4 = 3.﴾3k 2 + 4k +1﴿ + 1 => n 2 chia cho 3 dư 1

Vậy...

b﴿ p là số nguyên tố > 3 => p lẻ => p 2 lẻ => p 2 + 2003 chẵn => p 2 + 2003 là hợp số 

k minh nha

8 tháng 11 2017

Tran van thanh dung do

26 tháng 3 2016

mình chỉ giải được câu 1 thôi nhé 

số nguyên tố là số >1 có 2 ước

gọi số đó là 12k+9

a=12k+9      mà        số nguyên tố là số >1    suy ra    a >9      achia hết cho 3

vậy không có số nguyên tố thõa mãn

19 tháng 3 2018

bù nốt cho bạn này nhé

số nguyên tố chia 12 dư 9=12k+9

mà 12k+9=3(4k+3)

từ đó suy ra số đó chia hết cho 3(có hơn 1 ước)

mà số đó nếu là 3 => 3 không chia hết cho 12 (loại)

vậy Không có số nguyên tố nào chia 12 dư 9

25 tháng 10 2019

a) n là số ko chia hết cho 3 => có dạng 3k +1. Ta có : (3k+1) 2 = 3k2 + 1. Ta có 3k ^2 chia hết cho 3 ; 1^2 chia 3 dư 1 => n ^2 chia ba dư 1

b) vì p là SNT lớn hơn 3 => p^2 chia cho 3 có dạng 3k +1 . Ta có 3k+1 + 2003 = 3k + 2004 chia hết cho 3 => là hợp số

25 tháng 10 2019

a) Vì n là số không chia hết cho 3 nên n có dạng 3k+1 hoặc 3k+2

+) n = 3k+1 => n2 = (3k+1)

                             = 9k2 + 6k +1 

Có 9k2 \(⋮\)3 ; 6k \(⋮\)3  ; 1 \(⋮\) 3 dư 1 => 9k2 +6k +1 chia 3 dư 1 

                                   hay n2 chia 3 dư 1    (1)

+) n= 3k+2  => n= (3k+2)2   = 9k2 +12k + 4

Có 9k2 \(⋮\)3 ; 12k\(⋮\)3 ; 4 chia 3 dư 1   => 9k2 +12k +4 chia 3 dư 1 

                                                                hay n2 chia 3 dư 1     (2)

Từ (1),(2) => đpcm