K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 10 2018

Thiên Hương đẹp quá đi mất?

28 tháng 10 2018

 Cho hoi dap de hoi chi khong duoc noi lung tung day la pham loi trong hoi dap

18 tháng 9 2016

(x^99+x^11)+(x^55+x)+7 =x^11(x^88+1)+x(x^54+1)+7 =x^11(x^22+1) (x^66-x^44+x^22-1) + x(x^54+1)+7 = A+7 mà ta có:

 a^n+1=(a+1)(a^(n-1)-a^(n-2)+.....-1) (với n là lẻ) vậy a^n+1 chia hết cho a+1 với a lsf x^2,n lần lượt là 11 và 27=>A chia hết cho x^2+1 Xét 7(x^2+1) dư b nếu x=0 thì b=0 x=+ -1 thì b=1 x=+ -2 thì b=2 x>2 thì b=7 đó cũng là số dư của A+7 chia cho x^2+1. và là số dư cần tìm

14 tháng 9 2017

Tìm số dư của phép chia đa thức,(x^99 + x^55 + x^11 + x + 7) : (x^2 - 1),Toán học Lớp 8,bài tập Toán học Lớp 8,giải bài tập Toán học Lớp 8,Toán học,Lớp 8

đúng ko ?

16 tháng 1 2016

= x(x^98+1)+x(x^54+1)+x(x^10+1)-2x+7

= x[(x^2)^49+1]+x[(x^2)^27+1]+x[(x^2)^5+1]-2x+7

Vì (x^2)^27+1 chi hết cho x^2+1

    (x^2)^27+1 chi hết cho x^2+1

    (x^2)^5+1 chia hết cho x^2+1

=> x[x^2)^49+1]+x[(x^2)^27+1]+x[(x^2)^5+1] chia hết cho x^2+1

Vậy dư trong phép chia là 7-2x

30 tháng 10 2018

Gọi đa thức thương là H(x) 

17 tháng 2 2015

Huyền hỏi 2 bài liên tiếp à viết nhanh thế

17 tháng 2 2015

Các dạng bài này đc giải rất nhiều sao bạn ko coi thế?

AH
Akai Haruma
Giáo viên
17 tháng 3 2021

Lời giải:

$x^{99}+x^{55}+x^n+x-7=(x^{99}+x)+(x^{55}+x)+x^n-x-7$

$=x(x^{98}+1)+x(x^{54}+1)+x^n-x-7$

Hiển nhiên: $x^{98}+1=(x^2)^{49}+1\vdots x^2+1$

$x^{54}+1=(x^2)^{27}+1\vdots x^2+1$

Xét các TH sau:

TH1: $n=4k$ thì $x^n-1=x^{4k}-1\vdots x^4-1\vdots x^2+1$. Khi đó đa thức dư là $-x-6$

TH2: $n=4k+1$ thì $x^{n}-x=x(x^{4k}-1)\vdots x^2+1$. Khi đó đa thức dư là $-7$

TH3: $n=4k+2$ thì: $x^n+1=x^{4k+2}+1=(x^2)^{2k+1}+1\vdots x^2+1$. Khi đó đa thức dư là $-x-8$

TH4: $n=4k+3$ thì $x^n+x=x^{4k+3}+x=x(x^{4k+2}+1)\vdots x^2+1$. Khi đó đa thức dư là $-2x-7$

23 tháng 3 2021

Lấy ví du về vật có thế năng hấp dẫn so với mặt đất

 

14 tháng 6 2017

tôi no bít

gọi Q(x) là thương của phép chia x99+x55+x11+x+7x99+x55+x11+x+7 chox2−1x2−1

vì bậc của đa thức thương là 2 nên gọi đa thức dư cần tìm là ax+b

ta có x99+x55+x11+x+7=(x2−1)Q(x)+ax+bx99+x55+x11+x+7=(x2−1)Q(x)+ax+b

=(x−1)(x+1)Q(x)+ax+b(x−1)(x+1)Q(x)+ax+b (*)

thay x=1 ở (*) cho ta được 11=a+b

thay x=-1 ở (*) cho ta được 3=-a+b

ta có a+b+(-a+b)=11+3=14

⇔2b=14⇔b=7⇒a=11−7=4⇔2b=14⇔b=7⇒a=11−7=4

Vậy dư của phép chia đa thức P(x)= x99+x55+x11+x+7x99+x55+x11+x+7 chox2−1x2−1 là 4x+7