bài 1:Cho A = 3^1 + 3^2 + 3^3 + ... + 2^2010:
a)Thu gọn A
b)Tìm x để 2A + 3 = 3x
bài 2 : tìm 2 số tự nhiên a và b biết a + b = 432 và UCLN (a,b) = 36
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(\left|3-x\right|=x-5\)
\(\Leftrightarrow\orbr{\begin{cases}x-3=x-5\\x-3=5-x\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x-x=-5+3\\x+x=5+3\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}0x=-2\left(loại\right)\\2x=8\end{cases}}\)
=> x = 4
Bài 1 : Đặt a=36n;b=36n,ƯCLN(m;n)=1 với m,n thuộc Z
Ta có a+b=432 nên 36n+36m=432 => 36.(m+n)=432
m+n=432:36
m+n=12
=> ta xét từng số từ 1 ->11 .VD
m=1=>n=11=>ƯCLN =1(chọn)=>a=36,b=396
Nếu ƯCLN ko = 1 thì loại
B=3+3^2+...+3^100.
3B=3.3+3^2.3+...+3^100.3
3B=3^2+3^3+...+3^101
3B-B=(3^2+3^3+...+3^101)-(3+3^2+...+3^100)
2B=3^101-3
Mà2B+3=3^n
Suy ra:3^101-3+3=3^n
3^n+3^101
Vậy n=101
Bài 1(b) làm tương tự,còn bài (a) thì bạn tự làm
\(\left(x-1\right)\left(x+3\right)< 0\)
thì x-1 và x+3 khác dấu
\(th1\Leftrightarrow\orbr{\begin{cases}x-1< 0\\x+3>0\end{cases}\Leftrightarrow\orbr{\begin{cases}x< 1\\x>-3\end{cases}\Leftrightarrow}-3< x< 1\left(tm\right)}\)
\(th2\Leftrightarrow\orbr{\begin{cases}x-1>0\\x+3< 0\end{cases}\Leftrightarrow\orbr{\begin{cases}x>1\\x< -3\end{cases}\Leftrightarrow}1< x< -3\left(vl\right)}\)
lúc nãy mk quên kl câu b nha thêm vào
\(\left(x+2\right)\left(5-x\right)>0\)
thì x+2 và 5-x cùng dấu
\(th1\Leftrightarrow\orbr{\begin{cases}x+2< 0\\5-x< 0\end{cases}\Leftrightarrow\orbr{\begin{cases}x< -2\\x>5\end{cases}\Leftrightarrow}5< x< -2\left(vl\right)}\)
\(th2\Leftrightarrow\orbr{\begin{cases}x+2>0\\5-x>0\end{cases}\Leftrightarrow\orbr{\begin{cases}x>-2\\x< 5\end{cases}\Leftrightarrow}-2< x< 5\left(tm\right)}\)
với -2<x<5 thì
\(x\in\left\{-1;0;1;2;3;4\right\}\)
Lời giải:
a.
Ta có: $ab=BCNN(a,b).ƯCLN(a,b)$
$\Rightarrow 1200=3.ƯCLN(a,b).ƯCLN(a,b)$
$\Rightarrow ƯCLN(a,b).ƯCLN(a,b)=400=20.20$
$\Rightarrow ƯCLN(a,b)=20$
Đặt $a=20x, b=20y$ với $x,y$ là 2 số nguyên tố cùng nhau.
Khi đđ:
$ab=20x.20y$
$\Rightarrow 1200=400xy\Rightarrow xy=3$
Kết hợp với $x,y$ nguyên tố cùng nhau $\Rightarrow (x,y)=(1,3), (3,1)$
$\Rightarrow (a,b)=(20, 60), (60,20)$
b. Đề không rõ ràng. Bạn viết lại nhé.
\(A=3^1+3^2+3^3+...+3^{2010}\)
\(\Rightarrow3A=3^2+3^3+...+3^{2011}\)
\(\Rightarrow2A=3^{2011}-3\)
\(\Rightarrow A=\frac{3^{2011}-2}{2}\)
\(\Leftrightarrow2A+3=3^{2011}-3+3=2^{2011}\)
\(\Rightarrow x=2011\)