Cho tam giác ABC có đường phân giác AD. Trên tia đối của tia BA và CA ta lần lượt đặt các đoạn BE=BD, CF=CD. CM :EF//BC và D là giao điểm các đường phân giác của tam giác AEF
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: ΔCAB có AD là phân giác
nên BD/CD=BA/CA
b: BD/CD=BA/CA
mà BE=BD và CF=CD
nên BE/CF=BA/CA
c: Xét ΔBFE có BE/BA=CF/CA
nên BC//EF
Bài 1:
a) Xét tam giác ABE và tam giác ACF có:
Góc AEB=góc AFC(=90 độ)
Góc A chung
=>Tam giác ABE đồng dạng vs tam giác ACF (g-g)
b)
Vì tam giác ABE đồng dạng vs tam giác ACF(cmt)
=>\(\frac{AB}{AC}=\frac{AE}{AF}\)
Xét tam giác AFE và tam giác ACB có:
Góc A chung(gt)
\(\frac{AB}{AC}=\frac{AE}{AF}\)
=>Tam giác AFE và tam giác ACB đồng dạng (c-g-c)
c)
H ở đou ra vại? :))
Gọi Ax là phân giác của ^BAC. Dựng hình bình hành ABLC.
Trước hết ta có \(\Delta\)DBC cân tại B => ^BCD = ^BDC = ^LCD (Vì AB // CL)
Tương tự ^CBE = ^LBE. Do đó BE,CD là hai đường phân giác trong \(\Delta\)BLC
Vì BE giao CD tại O nên LO là phân giác của ^BLC
Chú ý rằng Ax là phân giác của ^BAC, suy ra Ax // LO
Mà OK // Ax nên K,O,L thẳng hàng (Tiên đề Euclid)
Do vậy ^CKL = ^BLK = ^CLK => \(\Delta\)KCL cân tại C => CK = CL = AB (đpcm).
a: Xét ΔABH vuông tại H và ΔDBH vuông tại H có
HB chung
HA=HD
Do đó: ΔABH=ΔDBH
Suy ra: \(\widehat{ABH}=\widehat{DBH}\)
hay BC là tia phân giác của góc ABD
Xét ΔACH vuông tại H và ΔDCH vuông tại H có
HC chung
HA=HD
Do đó: ΔACH=ΔDCH
Suy ra: \(\widehat{ACH}=\widehat{DCH}\)
hay CB là tia phân giác của góc ACD
b: Ta có: ΔABH=ΔDBH
nên BA=BD
Ta có: ΔACH=ΔDCH
nên CA=CD
c: Ta có: ΔAHC vuông tại H
nên \(\widehat{HAC}+\widehat{HCA}=90^0\)
\(\Leftrightarrow\widehat{CAD}=45^0\)
hay \(\widehat{ADC}=45^0\)