Tính tổng \(B=\dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+\dfrac{1}{3.4.5}+...+\dfrac{1}{n\left(n+1\right)\left(n+2\right)}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\dfrac{1}{n.\left(n+1\right).\left(n+2\right)}=\dfrac{1}{2}.\left(\dfrac{\left(n+2\right)-n}{n\left(n+1\right)\left(n+2\right)}\right)=\dfrac{1}{2}\left(\dfrac{1}{n\left(n+1\right)}-\dfrac{1}{\left(n+1\right)\left(n+2\right)}\right)\)
\(\Rightarrow B=\dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+\dfrac{1}{3.4.5}+...+\dfrac{1}{n\left(n+1\right)\left(n+2\right)}\)
\(=\dfrac{1}{2}.\left(\dfrac{1}{1.2}-\dfrac{1}{2.3}+\dfrac{1}{2.3}-\dfrac{1}{3.4}+\dfrac{1}{3.4}-\dfrac{1}{4.5}+...+\dfrac{1}{n\left(n+1\right)}-\dfrac{1}{\left(n+1\right)\left(n+2\right)}\right)\)\(=\dfrac{1}{2}.\left(\dfrac{1}{2}-\dfrac{1}{\left(n+1\right)\left(n+2\right)}\right)=\dfrac{n^2+3n}{4\left(n+1\right)\left(n+2\right)}\)
\(\dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+...+\dfrac{1}{n\left(n+1\right)\left(n+2\right)}=\dfrac{637}{2550}\)
\(\Leftrightarrow\dfrac{1}{2}\left(\dfrac{1}{1.2}-\dfrac{1}{2.3}+\dfrac{1}{2.3}-\dfrac{1}{3.4}+...+\dfrac{1}{n\left(n+1\right)}-\dfrac{1}{\left(n+1\right)\left(n+2\right)}\right)=\dfrac{637}{2550}\)
\(\Leftrightarrow\dfrac{1}{2}\left(\dfrac{1}{1.2}-\dfrac{1}{\left(n+1\right)\left(n+2\right)}\right)=\dfrac{637}{2550}\)
\(\Leftrightarrow\dfrac{1}{1.2}-\dfrac{1}{\left(n+1\right)\left(n+2\right)}=\dfrac{637}{1275}\)
\(\Leftrightarrow\dfrac{1}{\left(n+1\right)\left(n+2\right)}=\dfrac{1}{2}-\dfrac{637}{1275}=\dfrac{1}{2550}\)
\(\Leftrightarrow\left(n+1\right)\left(n+2\right)=2550\)
\(\Leftrightarrow n^2+3n-2548=0\)
\(\Rightarrow n=49\)
Bài 2.
\(S_n=\dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+\dfrac{1}{3.4.5}+...+\dfrac{1}{n\left(n+1\right)\left(n+2\right)}\)
\(\Rightarrow S_n=\dfrac{1}{1.2}-\dfrac{1}{2.3}+\dfrac{1}{2.3}-\dfrac{1}{3.4}+\dfrac{1}{3.4}-\dfrac{1}{4.5}+...+\dfrac{1}{n\left(n+1\right)}-\dfrac{1}{\left(n+1\right)\left(n+2\right)}\)\(\Rightarrow S_n=\dfrac{1}{1.2}-\dfrac{1}{\left(n+1\right)\left(n+2\right)}\)
Bài 1:
\(1\dfrac{13}{15}.\left(0,5\right)^2.3+\left(\dfrac{8}{15}-1\dfrac{19}{60}\right):1\dfrac{23}{14}\)
\(=\dfrac{28}{15}.\dfrac{1}{4}.3+\left(\dfrac{8}{15}-\dfrac{79}{60}\right):\dfrac{47}{24}\)
\(=\dfrac{28}{15}.\dfrac{1}{4}.3+\left(\dfrac{-47}{60}\right):\dfrac{47}{24}\)
\(=\dfrac{7}{15}.3+\left(\dfrac{-47}{60}\right):\dfrac{47}{24}\)
\(=\dfrac{7}{5}+\left(\dfrac{-47}{60}\right):\dfrac{47}{24}\)
\(=\dfrac{7}{5}+\dfrac{-2}{5}\)
\(=\dfrac{5}{5}=1\)
câu b bài 2:
\(\dfrac{1^2}{1\cdot2}\cdot\dfrac{2^2}{2\cdot3}\cdot\dfrac{3^2}{3\cdot4}\cdot\dfrac{4^2}{4\cdot5}\)
\(=\dfrac{1}{2}\cdot\dfrac{2}{3}\cdot\dfrac{3}{4}\cdot\dfrac{4}{5}\)
\(=\dfrac{1}{5}\)
câu a bài 2:
\(\dfrac{1}{1\cdot2\cdot3}+\dfrac{1}{2\cdot3\cdot4}+\dfrac{1}{3\cdot4\cdot5}+...+\dfrac{1}{10\cdot11\cdot12}\)
\(=\dfrac{1}{1}-\dfrac{1}{2}-\dfrac{1}{3}-\dfrac{1}{2}-\dfrac{1}{3}-\dfrac{1}{4}-...-\dfrac{1}{12}\)
\(=1-\dfrac{1}{12}=\dfrac{11}{12}\)
\(A=\dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+....+\dfrac{1}{18.19.20}=\dfrac{1}{2}\left(\dfrac{1}{1.2}-\dfrac{1}{2.3}+\dfrac{1}{2.3}-\dfrac{1}{3.4}+...+\dfrac{1}{18.19}-\dfrac{1}{19.20}\right)\\ =\dfrac{1}{2}\left(\dfrac{1}{2}-\dfrac{1}{19.20}\right)\\ =\dfrac{1}{4}-\dfrac{1}{2.19.20}< \dfrac{1}{4}\)
Cái B TT nhé
\(\dfrac{1}{2^2}+\dfrac{1}{3^2}+....+\dfrac{1}{n^2}< \dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{\left(n-1\right)n}\\ =1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{n-1}-\dfrac{1}{n}\\ =1-\dfrac{1}{n}< 1\)
D TT
E mk thấy nó ss ớ
\(2A=\dfrac{2}{1.2.3}+\dfrac{2}{2.3.4}+\dfrac{2}{3.4.5}+...+\dfrac{2}{18.19.20}\)
\(\Rightarrow2A=\dfrac{1}{1.2}-\dfrac{1}{2.3}+\dfrac{1}{2.3}-\dfrac{1}{3.4}+\dfrac{1}{3.4}-\dfrac{1}{4.5}+...+\dfrac{1}{18.19}-\dfrac{1}{19.20}\)
\(\Rightarrow2A=\dfrac{1}{1.2}-\dfrac{1}{19.20}< \dfrac{1}{1.2}\)
\(\Rightarrow2A< \dfrac{1}{2}\)
\(\Rightarrow A< \dfrac{1}{4}\) (đpcm)
\(S_n=\dfrac{1}{2}\left(\dfrac{1}{1.2}-\dfrac{1}{2.3}+\dfrac{1}{2.3}-\dfrac{1}{3.4}+....+\dfrac{1}{n\left(n+1\right)}-\dfrac{1}{\left(n+1\right)\left(n+2\right)}\right)\)
\(S_n=\dfrac{1}{2}\left(\dfrac{1}{1.2}-\dfrac{1}{\left(n+1\right)\left(n+2\right)}\right)\)
\(S_n=\dfrac{1}{2}\left(\dfrac{1}{2}-\dfrac{1}{n\left(n+2\right)+1\left(n+2\right)}\right)\)
\(S_n=\dfrac{1}{2}\left(\dfrac{1}{2}-\dfrac{1}{n^2+2n+n+2}\right)\)
\(S_n=\dfrac{1}{2}\left(\dfrac{1}{2}-\dfrac{1}{n^2+3n+2}\right)\)
\(S_n=\dfrac{1}{4}-\dfrac{1}{2\left(n^2+3n+2\right)}\)
\(S_n=\dfrac{1}{4}-\dfrac{1}{2n^2+6n+4}\)
\(S_n=\dfrac{2n^2+6n+4}{4\left(2n^2+6n+4\right)}-\dfrac{4}{4\left(2n^2+6n+4\right)}\)
\(S_n=\dfrac{2n^2+6n+4}{8n^2+48n+16}-\dfrac{4}{8n^2+48n+16}\)
\(S_n=\dfrac{2n^2+6n}{8n^2+48n+16}\)
\(S_n=\dfrac{2\left(n^2+3n\right)}{2\left(4n^2+24n+8\right)}=\dfrac{n^2+3n}{4n^2+24n+8}\)
\(S_n=\dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+...+\dfrac{1}{n\left(n+1\right)\left(n+2\right)}\\ 2S_n=\dfrac{2}{1.2.3}+\dfrac{2}{2.3.4}+...+\dfrac{2}{n\left(n+1\right)\left(n+2\right)}\\ 2S_n=\dfrac{1}{1.2}-\dfrac{1}{2.3}+\dfrac{1}{2.3}-\dfrac{1}{3.4}+...+\dfrac{1}{n\left(n+1\right)}-\dfrac{1}{\left(n+1\right)\left(n+2\right)}\\ =\dfrac{1}{1.2}-\dfrac{1}{\left(n+1\right)\left(n+2\right)}\\ =\dfrac{\left(n+1\right)\left(n+2\right)-2}{2\left(n+1\right)\left(n+2\right)}\\ =>S_n=\dfrac{\left(n+1\right)\left(n+2\right)-2}{4\left(n+1\right)\left(n+2\right)}\)
Giải sai r nhéLinh Nguyễn
\(B=\dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+\dfrac{1}{3.4.5}+......+\dfrac{1}{n\left(n+1\right)\left(n+2\right)}\)
\(=\dfrac{1}{1.2}-\dfrac{1}{2.3}+\dfrac{1}{2.3}-\dfrac{1}{3.4}+....+\dfrac{1}{n\left(n+1\right)}-\dfrac{1}{\left(n+1\right)\left(n+2\right)}\)
\(=\dfrac{1}{1.2}-\dfrac{1}{\left(n+1\right)\left(n+2\right)}\)
\(=\dfrac{1}{2}-\dfrac{1}{\left(n+1\right)\left(n+2\right)}\)
Vậy..
\(B=\dfrac{1}{2}\left(\dfrac{1}{1.2}-\dfrac{1}{2.3}+\dfrac{1}{2.3}-\dfrac{1}{3.4}+...+\dfrac{1}{n\left(n+1\right)}-\dfrac{1}{\left(n+1\right)\left(n+2\right)}\right)\)
\(B=\dfrac{1}{2}\left(\dfrac{1}{1.2}-\dfrac{1}{\left(n+1\right)\left(n+2\right)}\right)=\dfrac{n^2+3n+2-2}{4\left(n+1\right)\left(n+2\right)}=\dfrac{n\left(n+3\right)}{4\left(n+1\right)\left(n+2\right)}\)