Tìm 2 số dương biết tổng, hiệu, tích của chúng tỉ lệ ngịch với các số 20;140;7
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2.Gọi hai số dương lần lượt là x và y
Theo đề bài ta có : \(\frac{x+y}{\frac{1}{35}}=\frac{x-y}{\frac{1}{210}}=\frac{xy}{\frac{1}{12}}\)
hay \(35\left(x+y\right)=210\left(x-y\right)=12\left(x\cdot y\right)\)
Mà \(BCNN\left(35,210,12\right)=420\)
=> \(\frac{35\left(x+y\right)}{420}=\frac{210\left(x-y\right)}{420}=\frac{12\left(x\cdot y\right)}{420}\)
=> \(\frac{x+y}{12}=\frac{x-y}{2}=\frac{x\cdot y}{35}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
+)\(\frac{x+y}{12}=\frac{x-y}{2}=\frac{\left(x+y\right)-\left(x-y\right)}{12-2}=\frac{2y}{10}=\frac{y}{5}\)(1)
+) \(\frac{x+y}{12}=\frac{x-y}{2}=\frac{\left(x+y\right)+\left(x-y\right)}{12+2}=\frac{2x}{14}=\frac{x}{7}\)(2)
=> Từ (1) và (2) => \(\frac{x}{7}=\frac{y}{5}\)
Đặt \(\frac{x}{7}=\frac{y}{5}=k\Rightarrow\orbr{\begin{cases}x=7k\\y=5k\end{cases}}\)
=> \(xy=7k\cdot5k=35k^2\)
=> \(35k^2=35\)
=> \(k^2=1\)
=> k = 1(loại âm vì đề bài cho 2 số dương)
Do đó : \(\frac{x}{7}=1\Rightarrow x=7\)
\(\frac{y}{5}=1\)=> \(y=5\)
Vậy x = 7,y = 5
1. Câu hỏi của I will shine on the sky - Toán lớp 7 - Học toán với OnlineMath
Gọi 2 số cần tìm là x và y ta có:
\(20\left(x+y\right)=140\left(x-y\right)=7xy\)
\(\Rightarrow\frac{x+y}{7}=\frac{x-y}{1}=\frac{xy}{20}=\frac{x+y+x-y}{7+1}=\frac{x+y-x+y}{7-1}=\frac{x}{4}=\frac{y}{3}=\frac{xy}{4y}=\frac{xy}{3x}\)
\(3x=20\Rightarrow x=6\frac{2}{3};\) \(4y=20\Rightarrow y=5\)
Vậy các số cần tìm là \(6\frac{2}{3}\) và 5.
gọi 2 số là: a,b
từ giả thiết ta có:
20(a+b)= 140(a-b)= 7ab
+) 20(a+b)=140(a-b) tương đương với: 3a=4b suy ra a=4/3b
Thay vào : 20(a+b)= 7ab ta được phương trình:
20*( 4/3b+b)= 7*4/3b*b tưong đuơng 20*7/3b=7*4/3b^2
tương đương với: b^2 - 5b=0 tương đương với: b=0 hoặc b=5
suy ra a=....