Chứng minh rằng \(n^5+1999n+2017\) (n∈Z) không phải là số chính phương
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có n5 +1999n +2017 = n5 - n+2000n + 2015 +2 ( n E Z )
Ta thấy: n5 +1999n +2017 = n5 - n+2000n + 2015 +2 ( n E Z ) chia cho 5 dư 2
vì không có số chính phương nào chia 5 dư 2
Vậy n5 +1999n +2017 ( n E Z ) không phải là số chính phương
Theo mình nghĩ bài toán này phải là CMN n x n + (4b + 2) không phải là một số chính phương thì mới đúng ( 4b + 2 chỉ là dạng của cái số cộng thêm với b là số tự nhiên)
Nếu như vậy . ta có
Giả sử n x n + 2017 là số chính phương nên
n x n + (4b + 2) = a x a ( a là số tự nhiên )
4b + 2 = (a x a) / (n x n)
4b + 2= (a - n ) x (a + n )
Nếu a lẻ ; n chẵn và ngược lại thì ( a - n ) x ( a + n )bằng một số lẻ nhân với một số lẻ nên có kết quả là một số lẻ ( loại vì 4b + 2 là một số chẵn )
Nếu a chẵn ; n chẵn thì (a - n ) x (a + n ) là một số chẵn nhân với một số chẵn nên kết quả là một số chẵn
Vì số chẵn nhân với số chẵn nên lúc nào cũng chia hết cho 4 mà ( 4b + 2 ) không chia hết cho 4 nên n x n + (4b + 2) không thể có kết quả bằng a x a
Vậy với n là số tự nhiên thì n x n + (4b + 2) không phải là một số chính phương
Theo mình nghĩ bài toán này phải là CMN n x n + (4b + 2) không phải là một số chính phương thì mới đúng ( 4b + 2 chỉ là dạng của cái số cộng thêm với b là số tự nhiên)
Nếu như vậy . ta có
Giả sử n x n + 2017 là số chính phương nên
n x n + (4b + 2) = a x a ( a là số tự nhiên )
4b + 2 = (a x a) / (n x n)
4b + 2= (a - n ) x (a + n )
Nếu a lẻ ; n chẵn và ngược lại thì ( a - n ) x ( a + n )bằng một số lẻ nhân với một số lẻ nên có kết quả là một số lẻ ( loại vì 4b + 2 là một số chẵn )
Nếu a chẵn ; n chẵn thì (a - n ) x (a + n ) là một số chẵn nhân với một số chẵn nên kết quả là một số chẵn
Vì số chẵn nhân với số chẵn nên lúc nào cũng chia hết cho 4 mà ( 4b + 2 ) không chia hết cho 4 nên n x n + (4b + 2) không thể có kết quả bằng a x a
Vậy với n là số tự nhiên thì n x n + (4b + 2) không phải là một số chính phương
Vì n nguyên dương nên ta có \(n^2< n^2+n+1< n^2+2n+1\)
hay \(n^2< n^2+n+1< \left(n+1\right)^2\)
Mà n và (n+1) là hai số chính phương liên tiếp và \(n^2+n+1\)là số kẹp giữa hai số ấy nên không thể là số chính phương.
Với n nguyên dương thì
n2 < n2 + n < n2 + 2n
<=> n2 < n2 + n + 1 < n2 + 2n + 1
<=> n2 < n2 + n + 1 < ( n + 1 )2
Vì n2 + n + 1 kẹp giữa 2 SCP liên tiếp nên n2 + n + 1 không phải là SCP ( đpcm )
Đặt \(n^3-n+2=a^2\)
<=> \(n\left(n-1\right)\left(n+1\right)+2=a^2\)
Vì \(n\left(n-1\right)\left(n+1\right)\equiv0\left(mod3\right)\)
=> \(n\left(n-1\right)\left(n+1\right)+2\equiv2\left(mod3\right)\)
Mà 1 số chính phương chia 3 dư 0 hoặc 1
=> \(n^3-n+2\) không thể là số chính phương
Lời giải:
Sửa đề thành \(n\in\mathbb{N}\), vì nếu $n$ nguyên âm thì biểu thức không nguyên.
Đặt \(A=n^5+1999n+2017=n^5-n+2000n+2017\)
\(=n(n^4-1)+2000n+2017\)
\(=n(n^2-1)(n^2+1)+2000n+2017\)
--------------
Ta biết đến tính chất rất quen thuộc là một số chính phương chia $5$ thì dư $0,1$ hoặc $4$
Nếu \(n^2\equiv 0\pmod 5\Rightarrow n\equiv 0\pmod 5\) (do $5$ là snt)
\(\Rightarrow n(n^2-1)(n^2+1)\vdots 5\)
Nếu \(n^2\equiv 1\pmod 5\Rightarrow n^2-1\equiv 0\pmod 5\)
\(\Rightarrow n(n^2-1)(n^2+1)\vdots 5\)
Nếu \(n^2\equiv 4\pmod 5\Rightarrow n^2+1\equiv 5\equiv 0\pmod 5\)
\(\Rightarrow n(n^2-1)(n^2+1)\vdots 5\)
Tóm lại \(n(n^2-1)(n^2+1)\vdots 5, \forall n\in\mathbb{N}\)
\(\Rightarrow A=n(n^2-1)(n^2+1)+2000n+2015+2\) chia $5$ dư $2$. Do đó $A$ không thể là scp vì scp chia $5$ dư $0,1$ hoặc $4$
Ta có đpcm.