K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 9 2015

cau hỏi tương tự ko có mà!!!!!!!!!!!!!!!!!!!!!!!!!!!!

23 tháng 1 2022

3C=1.2.3+2.3.(4-1)+3.4.(5-2)+...+2014.2015.(2016-2013)

3C=2014.2015.2016

C=2014.2015.2016:3

6 tháng 11 2016

3S2=1*2*(3-0)+2*3*(4-1)+...+ n*(n+1)*[(n+2)-(n-1)]

3S2=1*2*3+2*3*4+...+n*(n+1)*(n+2)-0*1*2-1*2*3-...-(n-1)*n*(n+1)

3S2=n*(n+1)*(n+2)

\(S_2=\frac{n\left(n+1\right)\left(n+2\right)}{3}\)

13 tháng 1 2016

 

D = 1.2 + 2.3+ 3.4 +...+ 99.100

=>3D=1.2.3+2.3.3+3.4.3+...+99.100.3

=1.2.(3-0)+2.3.(4-1)+3.4.(5-2)+....+99.100.(101-98)

=1.2.3-0.1.2+2.3.4-1.2.3+3.4.5-2.3.4+...+99.100.101-98.99.100

=99.100.101-0.1.2

=99.100.101

=999900

=>D=999900:3=333300

 

Dn = 1.2 + 2.3 + 3.4 +...+ n (n +1)

=>3Dn=1.2.3+2.3.3+3.4.3+...+n(n+1).3

=1.2.(3-0)+2.3.(4-1)+3.4.(5-2)+...+n.(n+1).[(n+2)-(n-1)]

=1.2.3-0.1.2+2.3.4-1.2.3+2.3.4-2.3.4+....+n(n+1)(n+2)-(n-1)n(n+1)

=n.(n+1).(n+2)-0.1.2

=n.(n+1)(n+2)

=>Dn=n.(n+1)(n+2):3

 =>điều cần chứng minh

19 tháng 10 2021

Em tham khảo:

Câu hỏi của nguyễn huy bảo - Toán lớp 7 - Học trực tuyến OLM

19 tháng 10 2021

Ai mà bt đc

 

8 tháng 9 2018

Ta có : S = 1.2 + 2.3 + 3.4 + ..... + 99.100

=> 3S = 1.2.3 - 1.2.3 + 2.3.4 - 2.3.4 + .... + 99.100.101

=> 3S = 99.100.101

=> S = \(\frac{99.100.101}{3}=333300\)

NM
11 tháng 2 2021

ta xét

\(S\left(n\right)=1.2+2.3+..+n\left(n-1\right)\)

\(\Rightarrow3S\left(n\right)=1.2.3+2.3.3+..+3.n.\left(n-1\right)\)

\(\Leftrightarrow3S\left(n\right)=1.2.3+2.3.\left(4-1\right)+3.4.\left(5-2\right)+..+n\left(n-1\right)\left(n+1-\left(n-2\right)\right)\)

\(\Leftrightarrow3S\left(n\right)=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+..+n\left(n-1\right)\left(n+1\right)-n\left(n-1\right)\left(n-2\right)\)

\(\Leftrightarrow3S\left(n\right)=n\left(n-1\right)\left(n+1\right)\Rightarrow S\left(n\right)=\frac{n\left(n-1\right)\left(n+1\right)}{3}\)

Áp dụng ta có \(S\left(100\right)=\frac{99.100.101}{3}=333300\)

22 tháng 11 2021

Tham khảo:

https://olm.vn/hoi-dap/detail/7327860996.html

Ta có:

\(3A=1.2.3+2.3.3+3.4.3+....+n\left(n+1\right).3\)

\(\Leftrightarrow3A=1.2.3+2.3.\left(4-1\right)+3.4.\left(5-2\right)+...+n\left(n+1\right)\left[\left(n+2\right)-\left(n-1\right)\right]\)

   \(\Leftrightarrow3A=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+...+n\left(n+1\right)\left(n+2\right)-\left(n-1\right)n\left(n+1\right)\)

\(\Leftrightarrow3A=n\left(n+1\right)\left(n+2\right)\)

\(\Rightarrow A=\dfrac{n\left(n+1\right)\left(n+2\right)}{3}\)

 

4 tháng 7 2015

gọi a1=1.2=>3a1=1.2.3=>3a1=1.2.3-0.1.2

a2=2.3=>3a2=2.3.3=>3a1=2.3.4-1.2.3

tương tự .....

đến an-1=(n-1)n=>3an-1=3(n-1)n =>an-1=(n-1)n(n+1)-(n-2)(n-1)n

an=n.(n+1)=>3an=3.n(n+1)=>3an=n(n+1)(n+2)-(n-1)n(n+1)

cộng từng vế các đẳng thức ta được:

3a1+3a2+....+3an-1+3an=1.2.3-0.1.2+2.3.4-1.2.3+....+n(n+1)(n+2)-(n-1)n(n+1)

3(a1+a2+...+an-1+an)=n(n+1)(n+2)

3(1.2+2.3+3.4+...+n(n+1)=n(n+1)(n+2)

=>1.2+2.3+3.4+...+n.(n+1)=\(\frac{n\left(n+1\right)\left(n+2\right)}{3}\)

4 tháng 7 2015

    đặt\(A=1.2+2.3+3.4+.......+n\left(n+1\right)\)

\(\Rightarrow3A=1.2.3+2.3.3+3.4.3+....+n\left(n+1\right).3\)\(=1.2.3+2.3\left(4-1\right)+3.4\left(5-2\right)+...+n\left(n-1\right)\left[\left(n+2\right)-\left(n-1\right)\right]\)

\(=1.2.3+2.3.4-1.2.3+....+n\left(n+1\right)\left(n+2\right)-\left(n-1\right)n\left(n+1\right)\)

\(=n\left(n+1\right)\left(n+2\right)\)

\(\Rightarrow A=\frac{n\left(n+1\right)\left(n+2\right)}{3}\)