Cho tam giác ABC nhọn và AB <AC.Ngoài tam giác dựng các hình vuông BCKL và BADE .Trên tia dối của tia IB lấy M sao cho Ià trung điểm của BM.Chứng minh :
1) góc BAM = góc DBC
2) EL vuông góc BM
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo định lý sin ta có:
\(S_{ABC}=\dfrac{1}{2}\cdot AB\cdot AC\cdot sinA=\dfrac{1}{2}\cdot4\cdot8\cdot sin30^o=8\left(cm^2\right)\)
Mà: ΔAEC vuông tại E ta có:
\(AE=sinA\cdot AC=sin30^o\cdot8=4\left(cm\right)\)
ΔABD vuông tại D nên ta có:
\(AD=sinA\cdot AB=sin30^o\cdot4=2\left(cm\right)\)
Theo định lý sin ta có:
\(S_{AED}=\dfrac{1}{2}\cdot AE\cdot AD\cdot sinA\)
\(\Rightarrow S_{AED}=\dfrac{1}{2}\cdot4\cdot2\cdot sin30^o=2\left(cm^2\right)\)
a: Xét ΔABE vuông tại E và ΔACF vuông tại F có
góc A chung
=>ΔABE đồng dạng với ΔACF
b: ΔABE đồng dạng với ΔACF
=>AE/AF=AB/AC
=>AE/AB=AF/AC và AE*AC=AB*AF
Xét ΔAEF và ΔABC có
AE/AB=AF/AC
góc FAE chung
=>ΔAEF đồng dạng với ΔABC
a) Xét ΔAEC vuông tại E và ΔADB vuông tại D có
\(\widehat{BAD}\) chung
Do đó: ΔAEC\(\sim\)ΔADB(g-g)
a: Xét ΔCDA vuông tại D và ΔCEB vuông tại E có
góc DCA chung
=>ΔCDA đồng dạng với ΔCEB
=>CD/CE=CA/CB
=>CD*CB=CA*CE và CD/CA=CE/CB
b; Xét ΔCDE và ΔCAB có
CD/CA=CE/CB
góc C chung
=>ΔCDE đồng dạng với ΔCAB
c:
Xét ΔCAB có
AD,BE là đường cao
AD cắt BE tại H
=>H là trực tâm
=>CH vuông góc AB tại F
góc CEB=góc CFB=90 độ
=>CEFB nội tiếp
=>góc CEF+góc CBF=180 độ
mà góc CEF+góc AEF=180 độ
nên góc AEF=góc CBA
=>góc AEF=góc CED
a: Xét ΔABD vuông tại D và ΔACE vuông tại E có
góc BAD chung
=>ΔABD đồng dạng với ΔACE
=>AD/AE=AB/AC
=>AD*AC=AE*AB; AD/AB=AE/AC
b: Xet ΔADE và ΔABC có
AD/AB=AE/AC
góc DAE chung
=>ΔADE đồng dạng với ΔABC
I lấy đâu ra vậy bạn.
à mình viết nhầm