CMR: \(2.6^{2n}+6^n-3⋮25\) với mọi \(n\in N\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\orbr{\begin{cases}2n+1=4m+1\forall n⋮2\\2n+1=4m+3\forall n̸⋮2\end{cases}}\)n E N
Nếu 2n + 1 = 4m + 1
=> 22n+1 + 32n+1 = 24m+1 + 34m+1 = ...2 + ...3 = ...5 chia hết cho 5 [theo qui tắc về chữ số tận cùng bạn xem tại https://www.youtube.com/watch?v=p82ydQCe8jg]
Nếu 2n + 1 = 4m + 3
=> 22n+1 + 32n+1 = 24m+3 + 34m + 3 = ...8 + ...7 = ...5 chia hết cho 5 [theo qui tắc về chữ số tận cùng]
Vậy 22n+1 + 32n+1 chia hết cho 5 với mọi n E N
AI THẤY ĐÚNG NHỚ ỦNG HỘ NHÉ
a hình như lộn đề
b. a = - ( b + c)
\(\Leftrightarrow a^3=-\left(b+c\right)^3\)
\(\Leftrightarrow a^3=-\left(b^3+3.ab^2+3.a^2b+b^3\right)\)
\(\Leftrightarrow a^3=-b^3-3cb^2-3c^2b-b^3\)
\(\Leftrightarrow a^3+b^3+c^3=-3ab\left(a+b\right)\)
\(\Leftrightarrow a^3+b^3+c^3=-3bc.-a=3abc\)
chỗ nào ko hiểu gửi thư mik , gửi lun cái đề câu a nhá ^^
Do \(n\) và \(n+1\) là hai số tự nhiên liên tiếp
\(\Rightarrow n\left(n+1\right)⋮2\Rightarrow n\left(n+1\right)\left(2n+7\right)⋮2\)
Trường hợp 1: \(n=3k\)
Ta có: \(n⋮3\Rightarrow n\left(n+1\right)\left(2n+7\right)⋮3\)
Trường hợp 2: \(n=3k+1\)
Ta có \(2n+7=2\left(3k+1\right)+7=6k+9⋮3\)
\(\Rightarrow n\left(n+1\right)\left(2n+7\right)⋮3\)
Trường hợp 3: \(n=3k+2\)
Ta có \(n+1=3k+2+1=3k+3⋮3\)
\(\Rightarrow n\left(n+1\right)\left(2n+7\right)⋮3\)
Vậy \(n\left(n+1\right)\left(2n+7\right)\) vừa chia hết cho 2, vừa chia hết cho 3 nên nó chia hết cho 6.
\(a,25^{n+1}-25^n=25^n\left(25-1\right)=25^{n-1}\cdot25\cdot24=25^{n-1}\cdot100\cdot6⋮100,\forall n\)
\(b,n^2\left(n-1\right)-2n\left(n-1\right)=n\left(n-1\right)\left(n-2\right)⋮6,\forall n\)(vì là 3 số nguyên liên tiếp)
a) \(25^{n+1}-25^n=25^n\left(25-1\right)=25^n.24=25^{n-1}.6.4.25=25^{n-1}.6.100⋮100\forall n\in N\)
b) \(n^2\left(n-1\right)-2n\left(n-1\right)=n^3-3n^2+2n=\left(n-2\right)\left(n-1\right)n\)
là tích 3 số tự nhiên liên tiếp nên có một số chia hết cho 2 và một số chia hết cho 3
\(\Rightarrow n^2\left(n-1\right)-2n\left(n-1\right)⋮2.3=6\forall n\in Z\)