Một ghế băng có bốn chỗ ngồi. Có bốn người lần lượt đi đến và ngồi xuống ghế băng.Người đầu tiên một chỗ tùy ý.Mỗi người đến sau cố gắng chọn chỗ ngồi để không phải ngồi cạnh ai cả, nếu không có chỗ ngồi nào thỏa mãn thì họ ngồi một chỗ trống tùy ý để ngồi. Hỏi rằng có bao nhiêu khả năng sắp sếp chỗ ngồi cho bốn người đó phù hợp vói quy tắc như vậy?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cách 2:
Gọi x là số dãy ghế lúc đầu (Đk:x và x là ước của 250, dãy)
Số chỗ ngồi ở mỗi dãy lúc đầu: 250/x (chỗ)
Số dãy ghế lúc sau là x + 3 (dãy). Số chỗ ngồi lúc sau: 308/(x+3) (chỗ).
Vì mỗi dãy ghế phải kê thêm 1 chỗ ngồi nữa thì vừa đủ ta có PT:
308/(x+3)-250/x=1↔x^2-55x+750=0↔[█(x_1=30 (loại) vì 250 không chia hết cho 30@x_2=25 (nhận))┤
Vậy lúc đầu có 25 dãy ghế. Mỗi dãy ghế có 10 chỗ ngồi.
Cách 1:
Gọi x là số dãy ghế lúc đầu; y là số người trên mỗi dãy ghế lúc đầu (x,y>0)
Ta có tổng cộng 250 người nên x.y =250 (1)
Nếu thêm 3 dãy ghế tức x + 3 thì mỗi dãy còn lại phải xếp thêm 1 người tức y + 1
Ta có: (x+3).(y+1) = 250 (2)
Từ (1) và (2) ta có hệ:
Vậy lúc đầu có 25 dãy ghế. Mỗi dãy ghế có 10 chỗ ngồi.
hiệu số học sinh của 2 lần là: 6-4=2 học sinh
tổng số ghế mỗi lần là: 12+8=20 ghế
có số ghế là: 20:2=10 cái
có số học sinh là: 4x10+8=48 học sinh
đ/s:..
số ghế1 hàng số ghế 1 dãy tổng số ghế
dự tính X \(\dfrac{360}{x}\) 360
thực tế X+1 \(\left(\dfrac{360}{X}\right)+1\) 400
gọi số ghế của 1 hàng là x (dự tính)
=> số ghế của 1 dãy là \(\dfrac{360}{x}\)
thêm 1 hàng theo thực tế X+1
mỗi hàng thêm 1 ghế ( thêm 1 dãy) \(\left(\dfrac{360}{X}\right)+1\)
tổng số ghế thực tế là 400 nên ta có
\(\left(x+1\right).\left(\left(\dfrac{360}{X}\right)+1\right)=400\)
=> x=24
vậy số ghế của 1 hàng và 1 dãy ban đầu lần lượt là 24 và 15
Đáp án : Hội trường có 10 dãy ghế hoặc 20 dãy ghế, giải thích các bước giải :
Gọi số ghế ban đầu là x, x thuộc N* => ban đầu mỗi dãy ghế có 200/x ghế
=> Vì phải kê thêm 2 dãy ghế => Ta có x + 2 dãy ghế
=> Vì mỗi dãy phải ngồi thêm 2 người => mỗi dãy lại có : 200/x + 2 ghế
=> Số người đc ngồi là : ( x + 2 ) . ( 200/x + 2 ). Vì có 6 người k có ghế nên ( x + 2). ( 200/x + 2 ) +6= 270
=> ( x +2). ( 200/x + 2) = 264
=> ( x +2). ( 200 +2x ) = 264x
=> 2x2 + 400 + 204x = 264x
=> 2x2 - 60x + 4000 = 0
=> 2(x-10 ). ( x -20 ) = 0, Kết luận vậy từ đây ta có thể suy ra đc x thuộc { 10; 20 }
Coi ban đầu có n dãy ghế ( \(n\in N\)*; n < 250 , \(n\inƯ\left(250\right)\))
Ban đầu mỗi dãy có số chỗ ngồi là : \(\frac{250}{n}\) ( chỗ )
Do có 308 người dự họp, btc kê thêm 3 dãy ghế, mỗi dãy thêm một chỗ ngồi nên ta có phương trình :
\(\left(\frac{250}{n}+1\right)\left(n+3\right)=308\)
Bạn giải PT là ra n = 25 (TMĐK) và mỗi dãy ghế có 250 / 25 = 10 ( chỗ ngồi ).
Một hàng kê được số chỗ ngồi là:
81 : 9 = 9 (chỗ)
Với 108 người ứng với số hàng là:
108 : 9 = 12 (hàng)
Cần phải kê thêm số hàng là:
12 – 9 = 3 (hàng)
Đáp số: 3 hàng
80 phần trăm