Cho đa thức:\(f\left(x\right)=4x^2-7x^2+4x-5x^4-x^2+6x^3+5x^4-5\)
a)Thu gọn rồi sắp xếp các hạng tử của đa thức theo lũy thừa giảm dần của biến .
b)Xác định bậc của đa thức ,hệ số tự do ,hệ số cao nhất.
c)Tính f(-1);f(0);f(0,5);f(1)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(M\left(x\right)=-2x^5+5x^2+7x^4-5x+8+2x^5-7x^4-4x^2+6\)
\(=\left(-2x^5+2x^5\right)+\left(7x^4-7x^4\right)+\left(5x^2-4x^2\right)-9x+\left(8+6\right)\)
\(=x^2-9x+14\)
\(N\left(x\right)=7x^7+x^6-5x^3+2x^2-7x^7+5x^3+3\)
\(=\left(7x^7-7x^7\right)+x^6-\left(5x^3-5x^3\right)+2x^2+3\)
\(=x^6+2x^2+3\)
b) Đa thức M(x) có hệ số cao nhất là 1
hệ số tự do là 14
bậc 2
Đa thức N(x) có hệ số cao nhất là 1
hệ số tự do là 3
bậc 6
a: P=2+25x^2-3x^3+4x^2-2x-x^3+6x^5
=6x^5-4x^3+29x^2-2x+2
b: bậc của P(x) là 5
c: hệ số lớn nhất là 6
Hệ số tự do là 2
P(-1)=-6+4+29+2+2=29+2=31
\(A\left(x\right)=4x^3+12x-24x^2-2x^2+4x+17\)
\(=4x^3-26x^2+16x+17\)
Bậc là 3
Hệ số cao nhất là 6
Hệ số tự do là17
\(B\left(x\right)=5x^2-7x+3-2x^2+4x-8=3x^2-3x-5\)
Bậc là 2
Hệ số cao nhất là 3
Hệ số tự do là -5
a)
P(x) = x3 + 4x3 +3x - 6x - 4 - x2
P(x) = 5x3 -x2 -3x-4
Hệ số cao nhất là: 5
Hẹ số tự do là: -4
Q(x)= -x3 -x3 + 3x+8
Q(x) = -2x2 + 3x+8
\(P\left(x\right)=x^3+4x^3+3x-6x-4-x^2\)
\(P\left(x\right)=\left(x^3+4x^3\right)-x^2+\left(3x-6x\right)-4\)
\(P\left(x\right)=5x^3-x^3-3x-4\)
\(\text{Hệ số cao nhất:5}\)
\(\text{Hệ số tự do:-4}\)
\(Q\left(x\right)=-x^3-x^3+3x+8\)
\(Q\left(x\right)=\left(-x^3-x^3\right)+3x+8\)
\(Q\left(x\right)=-2x^3+3x+8\)
a: A(x)=3/4x^3+5/4x^3+4x^2+7x^2+3/5x-8/5x-1+4
=2x^3+11x^2-x+3
b: Bậc là 3
Hệ số cao nhất là 2
c: C(x)=2x^3+12x^2-3x+3-2x^3-11x^2+x-3
=x^2-2x
C(X)=0
=>x=0 hoặc x=2
a)\(M\left(x\right)=3x^4-x^3-2x^2+5x+7\)
\(N\left(x\right)=-3x^4+x^3+10x^2+x-7\)
1:
a: f(x)=2x^4+2x^3+2x^2+5x+6
g(x)=x^4-2x^3-x^2-5x+3
c: h(x)=2x^4+2x^3+2x^2+5x+6+x^4-2x^3-x^2-5x+3=3x^4+x^2+9
K(x)=f(x)-2g(x)-4x^2
=2x^4+2x^3+2x^2+5x+6-2x^4+4x^3+2x^2+10x-6-4x^2
=6x^3+15x
c: K(x)=0
=>6x^3+15x=0
=>3x(2x^2+5)=0
=>x=0
d: H(x)=3x^4+x^2+9>=9
Dấu = xảy ra khi x=0
1. \(f\left(x\right)=x+x^2-6x^3+3x^4+2x^2+6x-2x^4+1\)
\(\Rightarrow f\left(x\right)=7x+3x^2-6x^3+x^4+1\)
Sắp xếp theo lũy thừa giảm dần của biến x:
\(f\left(x\right)=x^4-6x^3+3x^2+7x+1\)
2. Bậc của đa thức: 4
Hệ số tự do: 1
Hệ số cao nhất: 7
3. \(f\left(-1\right)=\left(-1\right)^4-6.\left(-1\right)^3+3.\left(-1\right)^2+7.\left(-1\right)+1=4\)
\(f\left(0\right)=0^4-6.0^3+3.0^2+7.0+1=1\)
\(f\left(1\right)=1^4-6.1^3+3.1^2+7.1+1=6\)
\(f\left(-a\right)=\left(-a\right)^4-6.\left(-a\right)^3+3.\left(-a\right)^2+7.\left(-a\right)+1=3a+1\)
\(\)
Lời giải:
a.
$f(x) =-2x^3+x-1+4x^2-5x+3x^3=(-2x^3+3x^3)+4x^2+(-5x+x)-1$
$=x^3+4x^2-4x-1$
b.
Hệ số tự do: $-1$
Bậc $f(x)$: 3