K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
20 tháng 11 2018

Lời giải:

\(A=\frac{(2^3+1)(3^3+1)....(1000^3+1)}{(2^3-1)(3^3-1)....(1000^3-1)}=\frac{(2+1)(2^2-2+1)(3+1)(3^2-3+1)....(1000+1)(1000^2-1000+1)}{(2-1)(2^2+2+1)(3-1)(3^2+3+1)...(1000-1)(1000^2+1000+1)}\)

\(=\frac{(2+1)(3+1)...(1000+1)}{(2-1)(3-1)...(1000-1)}.\frac{(2^2-2+1)(3^2-3+1)...(1000^2-1000+1)}{(2^2+2+1)(3^2+3+1)...(1000^2+1000+1)}\)

\(=\frac{1000.1001}{2}.\frac{(2^2-2+1)(3^2-3+1)....(1000^2-1000+1)}{(2^2+2+1)(3^2+3+1)....(1000^2+1000+1)}\)

Ta thấy: \(n^2-n+1=(n^2-2n+1)+n=(n-1)^2+(n-1)+1\)

\(\Rightarrow 3^2-3+1=2^2+2+1\)

\(4^2-4+1=3^2+3+1\)

......

\(1000^2-1000+1=999^2+999+1\)

\(\Rightarrow (3^2-3+1)(4^2-4+1)...(1000^2-1000+1)=(2^2+2+1)(3^2+3+1)...(999^2+999+1)\)

Do đó: \(A=\frac{1000.1001}{2}.\frac{2^2-2+1}{1000^2+1000+1}=\frac{3}{2}.\frac{1000.1001}{1000(1000+1)+1}=\frac{3}{2}.\frac{1000.1001}{1000.1001+1}< \frac{3}{2}\)

a: \(\left(\sqrt{3}\right)^x=243\)

=>\(3^{\dfrac{1}{2}\cdot x}=3^5\)

=>\(\dfrac{1}{2}\cdot x=5\)

=>x=10

b: \(0,1^x=1000\)

=>\(\left(\dfrac{1}{10}\right)^x=1000\)

=>\(10^{-x}=10^3\)

=>-x=3

=>x=-3

c: \(\left(0,2\right)^{x+3}< \dfrac{1}{5}\)

=>\(\left(0,2\right)^{x+3}< 0,2\)

=>x+3>1

=>x>-2

d: \(\left(\dfrac{3}{5}\right)^{2x+1}>\left(\dfrac{5}{3}\right)^2\)

=>\(\left(\dfrac{3}{5}\right)^{2x+1}>\left(\dfrac{3}{5}\right)^{-2}\)

=>2x+1<-2

=>2x<-3

=>\(x< -\dfrac{3}{2}\)

e: \(5^{x-1}+5^{x+2}=3\)

=>\(5^x\cdot\dfrac{1}{5}+5^x\cdot25=3\)

=>\(5^x=\dfrac{3}{25,2}=\dfrac{1}{8,4}=\dfrac{10}{84}=\dfrac{5}{42}\)

=>\(x=log_5\left(\dfrac{5}{42}\right)=1-log_542\)

Ta có: D\(=\left(1-\dfrac{1}{2}\right)\left(1-\dfrac{1}{3}\right)\left(1-\dfrac{1}{4}\right)...\left(1-\dfrac{1}{2005}\right)\)

\(\Leftrightarrow D=\dfrac{1}{2}.\dfrac{2}{3}.\dfrac{3}{4}...\dfrac{2004}{2005}=\dfrac{1.2.3...2004}{2.3.4...2005}=\dfrac{1}{2005}\)

Ta có: \(E=\dfrac{1^2}{1.3}.\dfrac{2^2}{2.4}.\dfrac{3^2}{3.5}...\dfrac{999^2}{999.1000}.\dfrac{1000^2}{1000.1001}=\dfrac{\left(1.2.3.4...1000\right)\left(1.2.3.4...1000\right)}{\left(1.2.3....1000\right)\left(3.4.5....1001\right)}=\dfrac{2}{1001}\)

24 tháng 4 2021

bn lm sai rồi

19 tháng 4 2017

\(A=4.\dfrac{25}{16}+25.\left[\dfrac{9}{16}:\dfrac{125}{64}\right]:\dfrac{-27}{8}\)

\(=\dfrac{25}{16}+25.\dfrac{36}{125}:\dfrac{-27}{8}=-\dfrac{137}{240}\left(1\right)\)

\(B=125.\left[\dfrac{1}{25}+\dfrac{1}{64}:8\right]-64.\dfrac{1}{64}\)

\(=125.\dfrac{89}{1600}:8-64.\dfrac{1}{64}=\dfrac{-67}{512}\left(2\right)\)

Vì (2) > (1) => B > A

21 tháng 8 2020

a) \(A=\left(-1\right)^{2n}.\left(-1\right)^n.\left(-1\right)^{n+1}=\left(-1\right)^{3n+1}\)

b) \(B=\left(10000-1^2\right)\left(10000-2^2\right).........\left(10000-1000^2\right)\)

\(=\left(10000-1^2\right)\left(10000-2^2\right)......\left(10000-100^2\right)....\left(10000-1000^2\right)\)

\(=\left(10000-1^2\right)\left(10000-2^2\right).....\left(10000-10000\right).....\left(10000-1000^2\right)=0\)

c) \(C=\left(\frac{1}{125}-\frac{1}{1^3}\right)\left(\frac{1}{125}-\frac{1}{2^3}\right)..........\left(\frac{1}{125}-\frac{1}{25^3}\right)\)

\(=\left(\frac{1}{125}-\frac{1}{1^3}\right)\left(\frac{1}{125}-\frac{1}{2^3}\right).....\left(\frac{1}{125}-\frac{1}{5^3}\right)......\left(\frac{1}{125}-\frac{1}{25^3}\right)\)

\(=\left(\frac{1}{125}-\frac{1}{1^3}\right)\left(\frac{1}{125}-\frac{1}{2^3}\right)........\left(\frac{1}{125}-\frac{1}{125}\right).....\left(\frac{1}{125}-\frac{1}{25^3}\right)=0\)

d) \(D=1999^{\left(1000-1^3\right)\left(1000-2^3\right)........\left(1000-10^3\right)}\)

\(=1999^{\left(1000-1^3\right)\left(1000-2^3\right)........\left(1000-1000\right)}=1999^0=1\)

30 tháng 8 2017

ai trả lời nhanh nhất mk sẽ k cho 3 lần

8 tháng 10 2017

\(a.\)

\(\left[6.\left(-\dfrac{1}{3}\right)^2-3\left(-\dfrac{1}{3}\right)+1\right]:\left(-\dfrac{1}{3}-1\right)\)

\(=\left[6.\dfrac{1}{9}+1+1\right]:\left(-\dfrac{4}{3}\right)\)

\(=\left(\dfrac{8}{3}\right):\left(-\dfrac{4}{3}\right)\)

\(=\left(\dfrac{8}{3}\right).\left(-\dfrac{3}{4}\right)\)

\(=-2\)

\(b.\)

\(\dfrac{\left(\dfrac{2}{3}\right)^3.\left(-\dfrac{3}{4}\right)^2.\left(-1\right)^{2003}}{\left(\dfrac{2}{5}\right)^2.\left(-\dfrac{5}{12}\right)^3}\)

\(=\dfrac{\dfrac{8}{27}.\dfrac{9}{16}.\left(-1\right)}{\dfrac{4}{25}.\left(-\dfrac{125}{1728}\right)}\)

\(=\dfrac{-\dfrac{1}{6}}{-\dfrac{5}{432}}\)

\(=\dfrac{72}{5}\)

12 tháng 7 2023

a) \(A=\left(-0,75-\dfrac{1}{4}\right):\left(-5\right)+\dfrac{1}{48}-\left(-\dfrac{1}{6}\right):\left(-3\right)\)

\(A=\left(-0,75-0,25\right):\left(-5\right)+\dfrac{1}{48}-\left(-\dfrac{1}{6}\right)\cdot\dfrac{-1}{3}\)

\(A=\left(-1\right):\left(-5\right)+\dfrac{1}{48}-\dfrac{1}{18}\)

\(A=\dfrac{1}{5}+\dfrac{1}{48}-\dfrac{1}{18}\)

\(A=\dfrac{119}{720}\)

b) \(B=\left(\dfrac{6}{25}-1,24\right):\dfrac{3}{7}:\left[\left(3\dfrac{1}{2}-3\dfrac{2}{3}\right):\dfrac{1}{14}\right]\)

\(B=\left(0,24-1,24\right):\dfrac{3}{7}:\left[\left(\dfrac{7}{2}-\dfrac{11}{3}\right):\dfrac{1}{14}\right]\)

\(B=-1:\dfrac{3}{7}:\left(-\dfrac{1}{6}:\dfrac{1}{14}\right)\)

\(B=-\dfrac{7}{3}:-\dfrac{7}{3}\)

\(B=1\)

12 tháng 7 2023

a, A = (-0,75 - \(\dfrac{1}{4}\)) : (-5) + \(\dfrac{1}{48}\) - (- \(\dfrac{1}{6}\)) : (-3)

   A  = -(0,75 + 0,25): (-5) + \(\dfrac{1}{48}\) - \(\dfrac{1}{18}\)

   A = -1 : (-5) + \(\dfrac{1}{48}\) - \(\dfrac{1}{18}\)

   A = \(\dfrac{1}{5}\) + \(\dfrac{1}{48}\) - \(\dfrac{1}{18}\)

  A = \(\dfrac{53}{240}\) - \(\dfrac{1}{18}\)

 A = \(\dfrac{119}{720}\)

b, B = (\(\dfrac{6}{25}\) - 1,24): \(\dfrac{3}{7}\): [(3\(\dfrac{1}{2}\) - 3\(\dfrac{2}{3}\)): \(\dfrac{1}{14}\)]

    B = (0,24 - 1,24): \(\dfrac{3}{7}\):[(\(\dfrac{7}{2}\)-\(\dfrac{11}{3}\)): \(\dfrac{1}{14}\)]

    B = -1: \(\dfrac{3}{7}\):[ (-\(\dfrac{1}{6}\) : \(\dfrac{1}{14}\))]

   B  = -1: \(\dfrac{3}{7}\): (- \(\dfrac{7}{3}\))

B = 1 \(\times\) \(\dfrac{7}{3}\) \(\times\) \(\dfrac{3}{7}\)

B = 1

5 tháng 4 2017

Bài toán này giống của lớp 7 ghê

5 tháng 4 2017

lớp 6 đó

5 tháng 4 2017

1001