K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 11 2018

Đặt \(\frac{a}{2}=\frac{b}{-3}=\frac{c}{-4.5}=k\) suy ra \(a=2k,b=-3k;c=-4,5k\)

Thay vào P ,ta có:  \(P=\frac{3.2k-\left(-3k.2\right)}{8.2k+3k+\left(-4,5k\right)}=\frac{6k+6k}{16k+3k-4,5k}=\frac{12k}{14.5k}=\frac{12}{14.5}=\frac{24}{29}\)

Vậy ...

17 tháng 11 2018

đặt \(\frac{a}{2}=\frac{b}{-3}=\frac{c}{-4,5}=k\)

\(\Rightarrow a=2k,b=-3k,c=-4,5k\)

thay vào biểu thức P ta có:

\(P=\frac{3.2k-2.\left(-3k\right)}{8.2k-\left(-3k\right)+3.\left(-4,5k\right)}=\frac{6k+6k}{7,5k}=\frac{12}{7,5}=\frac{8}{5}\)

10 tháng 2 2017

=4 nhé

10 tháng 2 2017

nó bảo sai bạn ạ

2 tháng 5 2017

dúng đó

15 tháng 2 2017

Theo bài ra , ta có : 

\(3a+2b-c-d=1\)

\(2a+2b-c-2d=2\)

\(4a-2b-3c+d=3\)

\(8a+b-6c+d=4\)(1)

Cộng từng vế của 3 biểu thức đầu lại ta đk \(3a+2b-c-d+2a+2b-c-2d+4a-2b-3c+d=1+2+3\)

\(\Leftrightarrow9a+2b-5c+2d=6\)(2)

Trừ phương trình (2) cho phương trình (1) theo từng vế ta đk 

\(9a+2b-5c+2d-8a-b+6c-d=6-4=2\)

\(\Leftrightarrow a+b+c+d=2\)

Vậy \(a+b+c+d=2\)

Chúc bạn học tốt =)) 

13 tháng 2 2017

Cộng vế vs vế của những đẳng thức đã cho

DM
31 tháng 1 2018

Từ hai phương trình đầu suy ra a+d = -1, hay d = -1 -a . Thế vào ba phương trình cuối ta được hệ phương trình ba ẩn:

                4a+2b-c =0; 3a - 2b - 3c = 4; 7a + a - 6c = 5.

Giải hệ này (chẳng hạn sử dụng máy tính cầm tay CASIO fx - 570 ) ta được 

                \(a=\frac{4}{37};b=-\frac{23}{37};c=-\frac{30}{37}\) suy ra  \(a=-1-\frac{4}{37}=-\frac{41}{37}\)

Từ đó    a + b + c + d = -90/37

a/2=b/-3=c/-4,5

nên a/4=b/-6=c/-9

Đặt a/4=b/-6=c/-9=k

=>a=4k; b=-6k; c=-9k

\(P=\dfrac{3a-2b}{8a-b+3c}=\dfrac{3\cdot4k-2\cdot\left(-6k\right)}{8\cdot4k+6k+3\cdot\left(-9k\right)}=\dfrac{24}{11}\)

16 tháng 11 2021

làm ơn trả lời hộ mk với ah mai mk phải nộp bài r

gianroi

5 tháng 3 2018

đăng câu hỏi linh tinh

5 tháng 3 2018

mình có nick sv1 nè lấy o

tk:mnmn@vk.ck

mt:aaaa hoặc cccc

15 tháng 2 2017

Ta có các phương trình: 3a+2b-c-d=1 (1)

2a+2b-c+2d=2 (2)

4a-2b-3c+d=3 (3)

8a+b-6c+d=4 (4)

Cộng phương trình (1) , (2) và (3) ta được:

(3a+2b-c-d)+( 2a+2b-c+2d)+(4a-2b-3c+d)=1+2+3

<=> 9a+2b-5c+2d=6 (5)

Lấy phương trình (5) trừ phương trình (4) ta được:

( 9a+2b-5c+2d)-(8a+b-6c+d)=6-4

<=> a+b+c+d=2

Vậy a+b+c+d=2

v