Dùng phương pháp hệ số bất định để phân tích đa thức thành nhân tử:
x4 - 8x + 63
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2x4 - 3x3 - 7x2 +6x+8
= 2x4 - 4x3 + x3 - 2x2 - 5x2 +10x - 4x +8
= 2x3.(x-2) +x2.(x-2) - 5x.(x-2) - 4.(x-2)
= (x-2).(2x3 +x2 - 5x -4)
= (x-2).(2x3 + 2x2 - x2 - x - 4x-4)
= (x-2).(x+2).(2x2 -x -4)
....
Đặt H \(=x^4-5x^3+7x^2-6\)
Gỉa sử : \(H=\left(x^2+ax+b\right)\left(x^2+cx+d\right)\)
\(=x^4+cx^3+dx^2+ax^{3\:}+acx^2+adx+bx^2+bcx+bd\)
\(=x^4+\left(a+c\right)x^3+\left(ac+b+d\right)x^2+\left(ad+bc\right)x+bd\)
\(\Leftrightarrow\hept{\begin{cases}a+c=-5\\ac+b+d=7\\ad+bc=0\end{cases}}\)
\(\left\{bd=6\right\}\)
\(\Leftrightarrow\hept{\begin{cases}a=-3\\b=3\\c=-2\end{cases}}\)
\(\left\{d=-2\right\}\)
\(\Rightarrow H=\left(x^2-3x+3\right)\left(x^2-2x-2\right)\)
Chúc bạn học tốt !!!
ak
x8 + -7x4 + -8 = 0 Reorder the terms: -8 + -7x4 + x8 = 0 Solving -8 + -7x4 + x8 = 0 Solving for variable 'x'. Factor a trinomial. (-1 + -1x4)(8 + -1x4) = 0
\(x^4-8x+63=\left(x^2\right)^2+2.x^2.8+8^2-16x^2-8x-1\)
\(=\left(x^2+8\right)^2-\left(4x+1\right)^2\)
\(=\left(x^2+8-4x-1\right)\left(x^2+8+4x+1\right)=\left(x^2-4x+7\right)\left(x^2+4x+9\right)\)
Cách hệ số bất định đây nhé:
Giả sử: \(x^4-8x+63=\left(x^2+ax+7\right)\left(x^2+cx+9\right)\)
\(=x^4+cx^3+9x^2+ax^3+acx^2+9ax+7x^2+7cx+63\)
\(=x^4+\left(c+a\right)x^3+\left(9+ac+7\right)x^2+\left(9a+7c\right)+63\)
Đồng nhất hệ số,ta được:
c + a = 0 (1)
ac = - 16 (2)
9a + 7c = -8 (3)
Giải (1) được c=-a.Thay vào (2) được: \(ac=-a^2=c^2=16\)
Suy ra \(c=4\Rightarrow a=-4\) (ta thay vào (3) để loại c = -4 nên ở đây mình làm tắt)
Vậy: \(x^4-8x+63=\left(x^2-4x+7\right)\left(x^2+4x+9\right)\)
P/s: Ở đây là gặp may mắn vì đã chọn được 63 = 7 . 9 là đúng=) Còn chọn 63 = 1. 63 thì khó làm đấy=)