CMR 10^n chia 45 luôn dư 10 với mọi n thuộc N*
bạn nào làm được mk tick cho
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
giả sử 10n chia cho 45 dư 10 => 10n - 10 sẽ chia hết cho 45
vậy 10n - 10 chắc chắn chia hết cho 9 và 5 ( ta cm điều đó )
ta có 10n - 10 = 100000....n số o - 10 = 999999........( n - 1 số 9 ) 0
hay :( n - 1 số 9 ) x 10
xét thấy n - 1 số 9 chia hết ho 9 và 10 chia hết cho 5 => 10nn - 10 chia hết cho 45
nên 10n chia cho 45 sẽ dư 10 ( đpcm )
Gỉa sử 10n chia hết cho 45 dư 10 => 10n - 10 sẽ chia hết cho 45
Vậy 10n - 10 chắc chắn sẽ chai hết cho 9 và 5
Ta có : 10n - 10 = 10000....n số 0 - 10 = 9999......( n-1 số 9 )
hay : ( n-1 số 9 ) x 10
Xét thấy : n - 1 số 9 chia hết cho 9 và 10 chia hết cho 5 => 10n - 10 chia hết cho 45
nên 10n chia cho 45 luôn dư 10
Ta có : 22n = ( 22 )n = 4n mà 4 \(\equiv\)1 ( mod3 )
=> 4n \(\equiv\)1 ( mod3 ) ( n thuộc N )
=> 4n = 3k + 1 ( k thuộc N )
=> 2 ^ 2 ^ 2n = 23k+1 = 8k . 2 mà 8 \(\equiv\)1 ( mod7 )
=> 8k \(\equiv\)1 ( mod7 )
=> 2 . 8k \(\equiv\)2 ( mod7 )
Hay 2 ^ 2 ^ 2n \(\equiv\)2 ( mod7 ) => 2 ^ 2 ^ 2n + 5 \(\equiv\)2 - 2 ( mod7 )
Mà 5 \(\equiv\)- 2 ( mod7 ) => 2 ^ 2 ^ 2n + 5 \(\equiv\)0 ( mod7 )
Vậy 2 ^ 2 ^ 2n + 5 chia hết cho 7 ( dpcm )
đề sai bn nhé
Phải là Cho n thuộc N CMR n^2 chia hết cho 3 hoặc n^2 chia 3 dư 1
Đơn giản thôi:
Xét n=3k=> n^2=9k^2 chia hết cho 3
Xét n=3q+1=> n^2=9q^2+6q+1 chia 3 dư 1 do 9q^2 và 6q chia hết cho 3 và 1 chia 3 dư 1
Xét n=3p+2 => n^2=9p^2+6p+4 chia 3 dư 1 do 9p^2 và 6p chia hết cho 3 và 4 chia 3 dư 1
Vậy với mọi n thuộc N thì n^2 chia 3 dư 0 hoặc 1.
b) Có mn(m^2-n^2)
=mn(m-n)(m+n)
Nếu m hoặc n chia hết cho 3 thì xong luôn
Nếu m và n cùng dư khi chia cho 3 thì m-n chia hết cho 3
Nếu m và n khác dư khi chia cho 3 (lúc đó m,n ko chia hết cho 3) thì m+n chia hết cho 3
Vậy với mọi m,n thuộc N thì mn(m^2-n^2) chia hết cho 3
10n - 36n - 1
= 10n - 1 - 9n - 27n
= 1000...0 - 1 - 9n - 27n
(n c/s 0)
= 999...9 - 9n - 27n
(n c/s 9)
= 9.(111...1 - n) - 27n
(n c/s 1)
Vì 1 số và tổng các chữ số của nó có cùng số dư trong phép chia cho 3 mà tổng các chữ số của 111...1 (n c/s 1) là n
=> 111...1 - n chia hết cho 3
(n c/s 1)
=> 9.(111...1 - n) chia hết cho 27; 27n chia hết cho 27
(n c/s 1)
=> 10n - 36n - 1 chia hết cho 27 (đpcm)