cho đường tròn (O) đường kính AC và điểm B trên đường tròn sao cho Sđ cung BC=60 độ .Qua B kẻ dây BD vuông góc AC ,qua D kẻ dây DF song song AC.tính số đo cung CD,AB,FD
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét (O) có
ΔBAC nội tiếp
AC là đường kính
Do đó: ΔBAC vuông tại B
Xét (O) có
\(\widehat{BAC}\) là góc nội tiếp chắn cung BC
Do đó: \(\widehat{BAC}=\dfrac{1}{2}\cdot sđ\stackrel\frown{BC}=\dfrac{1}{2}\cdot60^0=30^0\)
Gọi H là giao điểm của BD với AC
BD\(\perp\)AC nên BD\(\perp\)AC tại H
ΔOBD cân tại O
mà OH là đường cao
nên H là trung điểm của BD
Xét ΔCBD có
CH là đường cao
CH là đường trung tuyến
Do đó: ΔCBD cân tại C
=>CB=CD
Xét ΔCOD và ΔCOB có
CD=CB
OD=OB
CO chung
Do đó: ΔCOD=ΔCOB
=>\(\widehat{COD}=\widehat{COB}\)
=>\(sđ\stackrel\frown{CB}=sđ\stackrel\frown{CD}=60^0\)
Xét ΔBAC vuông tại B có \(\widehat{BAC}+\widehat{BCA}=90^0\)
=>\(\widehat{BCA}+30^0=90^0\)
=>\(\widehat{BCA}=60^0\)
Xét (O) có
\(\widehat{BCA}\) là góc nội tiếp chắn cung AB
Do đó: \(\widehat{BCA}=\dfrac{1}{2}\cdot sđ\stackrel\frown{AB}\)
=>\(sđ\stackrel\frown{AB}=2\cdot\widehat{BCA}=120^0\)
DF//AC
DB\(\perp\)AC
Do đó: DF\(\perp\)DB
=>ΔDFB vuông tại D
ΔDFB vuông tại D
nên ΔDFB nội tiếp đường tròn đường kính BF
mà ΔDFB nội tiếp (O)
nên O là trung điểm của BF
=>OA//DF
=>\(\widehat{BFD}=\widehat{BOH}=\widehat{BOC}\)(hai góc đồng vị)
=>\(\widehat{BFD}=60^0\)
ΔBDF vuông tại D
=>\(\widehat{BFD}+\widehat{FBD}=90^0\)
=>\(\widehat{FBD}+60^0=90^0\)
=>\(\widehat{FBD}=30^0\)
Xét (O) có
\(\widehat{FBD}\) là góc nội tiếp chắn cung FD
Do đó: \(\widehat{FBD}=\dfrac{1}{2}\cdot sđ\stackrel\frown{FD}\)
=>\(sđ\stackrel\frown{FD}=2\cdot\widehat{FBD}=2\cdot\)30=60 độ
góc DCA=góc DBA
góc AKB=góc AHB=90 độ
=>AHBK nội tiếp
=>góc AKB+góc AHB=180 độ
=>góc AKH=góc ABH=góc HCD
góc DAC=góc DBC=góc DIH
=>180 độ-góc DAC=180 độ-góc DIH
=>góc CAK=góc HIC
=>góc HAK=góc HIC
mà góc AKH=góc HCI
nên ΔHAK đồng dạng với ΔHIC
=>góc AHK=góc IHC
=>góc IHC+góc KHC=180 độ
=>góc KHI=180 độ
=>K,I,H thẳng hàng
a: ΔODE cân tại O có OI là trung tuyến
nên OI vuông góc DE
góc OIA+góc OBA=180 độ
=>OIAB nội tiếp
b: Xét ΔKCE và ΔKBC có
góc KCE=góc KBC
góc K chung
=>ΔKCE đồng dạng với ΔKBC
=>KC/KB=KE/KC
=>KC^2=KB*KE