7 mũ x-1 + 7 mũ x+1 = 350 tìm x
( x - 0,2 ) mũ 10 + ( y + 3,5 ) mũ 20 =0 tìm x , y
Các bạn giúp mình với nhé mình đg cần gấp
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(2.\left(x+\frac{2}{5}\right)+1\frac{1}{4}=\frac{11}{20}\)
\(2.\left(x+\frac{2}{5}\right)+\frac{5}{4}=\frac{11}{20}\)
\(2.\left(x+\frac{2}{5}\right)=\frac{-7}{10}\)
\(x+\frac{2}{5}=\frac{-7}{20}\)
\(x=\frac{-13}{20}\)
Vậy \(x=\frac{-13}{20}\)
b)\(x-1\frac{1}{8}-\frac{2}{3}x-\frac{5}{6}x=75\%\)
\(\left(x-\frac{2}{3}x-\frac{5}{6}x\right)-\frac{9}{8}=\frac{3}{4}\)
\(\frac{-1}{2}x-\frac{9}{8}=\frac{3}{4}\)
\(\frac{-1}{2}x=\frac{15}{8}\)
\(x=\frac{-15}{4}\)
Vậy \(x=\frac{-15}{4}\)
\(\left(\frac{2}{5}\right)^2+5\frac{1}{2}:\left(4,5-2\right)-0,2\)
\(=\frac{4}{25}+\frac{11}{2}:\frac{5}{2}-\frac{1}{5}\)
\(=\frac{4}{25}+\frac{11}{2}.\frac{2}{5}-\frac{1}{5}\)
\(=\frac{4}{25}+\frac{11}{5}-\frac{1}{5}\)
\(=\frac{4}{25}+\frac{55}{25}-\frac{5}{25}\)
\(=\frac{54}{25}\)
a) Đề sai
b) \(\left|x+\frac{4}{5}\right|=\frac{1}{7}\)
\(\Rightarrow\orbr{\begin{cases}x+\frac{4}{5}=\frac{1}{7}\\x+\frac{4}{5}=\frac{-1}{7}\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{1}{7}-\frac{4}{5}\\x=\frac{-1}{7}-\frac{4}{5}\end{cases}\Rightarrow\orbr{\begin{cases}x=\frac{5}{35}-\frac{28}{35}\\x=\frac{-5}{35}-\frac{28}{35}\end{cases}\Rightarrow}\orbr{\begin{cases}x=\frac{-23}{35}\\x=\frac{-33}{35}\end{cases}}}\)
Vậy \(x=\frac{-23}{35}\)hoặc \(x=\frac{-33}{35}\)
a) \(a^2\cdot a^3\cdot a^7\cdot b^2\cdot b\)
\(=\left(a^2\cdot a^3\cdot a^7\right)\cdot\left(b^2\cdot b\right)\)
\(=a^{12}\cdot b^3\)
b) \(b^6\cdot b\cdot c^7\cdot c^8\)
\(=\left(b^6\cdot b\right)\cdot\left(c^7\cdot c^8\right)\)
\(=b^7\cdot c^{15}\)
c) \(a^8\cdot a^9\cdot a\cdot c\cdot c^{20}\)
\(=\left(a^8\cdot a^9\cdot a\right)\cdot\left(c\cdot c^{20}\right)\)
\(=a^{18}\cdot c^{21}\)
d) \(a^2\cdot a^3\cdot b^4\cdot c\cdot c^3\)
\(=\left(a^2\cdot a^3\right)\cdot b^4\cdot\left(c\cdot c^3\right)\)
\(=a^5\cdot b^4\cdot c^4\)
a) Kiểm tra lại nhé
b) \(b^6.b^7.c^8\)
\(=b^{6+7}.c^8=b^{13}.c^8\)
c) \(a^8.a^9.a.c.c^{20}\)
\(=a^{8+9+1}.c^{1+20}\)
\(=a^{18}.c^{21}\)
d) \(a^2.a^3.b^4.c.c^3\)
\(=a^{2+3}.b^4.c^{1+3}\)
\(=a^5.b^4.c^4\)
\(#WendyDang\)
\(x^4\cdot x^7\cdot...\cdot x^{100}\)
\(=x^{4+7+...+100}\)
\(=x^{52\cdot33}=x^{1716}\)
\(x^1\cdot x^2\cdot x^3\cdot...\cdot x^{2006}\)
Ta có : \(x^1\cdot x^2=x^{1+2}=x^3\)
Tương tự : \(x^1\cdot x^2\cdot x^3=x^{1+2+3}=x^6\)
Áp dụng vào bài toán :
\(x^1\cdot x^2\cdot x^3\cdot...\cdot x^{2006}=x^{1+2+3+...+2006}\)
\(\Rightarrow x^{1+2+3+...+2006}=x^{2013021}\)