K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 2 2016

a, nếu x<3/2suy ra x-2<0 suy ra |x-2|=-(x-2)=2-x

                            (3-2x)>0 suy ra|3-2x|=3-2x

ta có: 2-x+3-2x=2x+1 

        5-3x=2x+1

        5-1=2x+3x

        6=6x nsuy ra x=6(loại vì ko thuộc khả năng xét)

nếu \(\frac{3}{2}\le x<2\)thì x-2<0 suy ra|x-2|=-(x-2)=2-x

                                2-2x<0 suy ra|3-2x|=-(3-2x)=2x-3

ta có:2-x+2x-3=2x+1

      -1+x=2x+1

      -1-1=2x-x

       -2=x(loại vì ko thuộc khả năng xét)

nếu \(x\ge2\)thì x-2\(\ge\)0suy ra:|x-2|=x-2

                       3-2x<0 suy ra:|3-2x|=-(3-2x)=2x-3

ta có:x-2+2x-3=2x+1

        3x-5=2x+1

       3x-2x=5+1

     x=6(chọn vì thuộc khả năng xét)

suy ra x=6

22 tháng 2 2016

c)\(tacó:2x=3y\Rightarrow\frac{x}{3}=\frac{y}{2}\Rightarrow\frac{x}{15}=\frac{y}{10}\)  

   \(4y=5z\Rightarrow\frac{y}{5}=\frac{z}{4}\Rightarrow\frac{y}{10}=\frac{z}{8}\)

suy ra:\(\frac{x}{15}=\frac{y}{10}=\frac{z}{8}=k\Rightarrow x=15k;y=10k;z=8k\)

 ta có: 4(15k)-3(10k)+5(8k)=7

           60k-30k+40k=7

           70k=7 suy ra k=1/10

ta có:x=1/10.15=3/2

        y=1/10.10=1

     

DD
24 tháng 8 2021

Bài 4. 

\(\left|x-1\right|+\left|y-2\right|+\left(z-x\right)^2=0\)

\(\Leftrightarrow\hept{\begin{cases}x-1=0\\y-2=0\\z-x=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=z=1\\y=2\end{cases}}\)

Bài 3. 

\(\left|x-1\right|+\left|2x-2\right|+\left|4x-4\right|+\left|5x-5\right|=36\)

\(\Leftrightarrow\left|x-1\right|+2\left|x-1\right|+4\left|x-1\right|+5\left|x-1\right|=36\)

\(\Leftrightarrow12\left|x-1\right|=36\)

\(\Leftrightarrow\left|x-1\right|=3\)

\(\Leftrightarrow\orbr{\begin{cases}x-1=3\\x-1=-3\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=4\\x=-2\end{cases}}\)

NV
12 tháng 6 2020

\(\Leftrightarrow8x^2+2y^2-4xy-4x-2y< 2\)

\(\Leftrightarrow\left(4x^2-4xy+y^2\right)+\left(y^2-2y+1\right)+\left(4x^2-4x+1\right)< 4\)

\(\Leftrightarrow\left(2x-y\right)^2+\left(y-1\right)^2+\left(2x-1\right)^2< 4\)

\(\Rightarrow\left(2x-1\right)^2< 4-\left(2x-y\right)^2-\left(y-1\right)^2< 4\)

\(\Leftrightarrow\left(2x-1\right)^2=1\) (do \(\left(2x-1\right)^2\) luôn là SCP lẻ)

\(\Rightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)

- Với \(x=0\Rightarrow y^2-y< 1\Rightarrow\left(2y-1\right)^2< 5\)

\(\Rightarrow\left(2y-1\right)^2=1\Rightarrow\left[{}\begin{matrix}y=0\\y=1\end{matrix}\right.\)

- Với \(x=1\Rightarrow y^2-3y+1< 0\Rightarrow\left(2y-3\right)^2< 5\)

\(\Rightarrow\left(2y-3\right)^2=1\Rightarrow\left[{}\begin{matrix}y=2\\y=1\end{matrix}\right.\)