Cho tam giác ABC có góc A < 90 độ . Trên nửa mặt phẳng chứa đỉnh C có bờ là đường thẳng AB ta kẻ tia AE vuông góc vs AB và đặt AE = AB . Trên nửa mặt phẳng không chứa đỉnh B có bờ là đường thẳng AC ta kẻ tia AD vuông góc vs AC và đtặ AD = AC . Nối E vs D . Gọi M và N là các trung điểm của các cạnh BC và ED . CMR :
a) Các tam giac ABC và AED = nhau
b) Các tam giác AMC và AND bằng nhau
Giải
Bạn cân hình cho vuông góc nha! Mình không cân được.
Hai tia AE và AC cùng thuộc nửa mặt phẳng có bờ là đường thẳng AB và \(\widehat{BAC}< \widehat{BAE}=90^o\)nên tia AC nằm giữa hai tia AB và AE .
Do đó :
\(\widehat{BAC}+\widehat{CAE}=\widehat{BAE}\)hay
\(\widehat{BAC}=90^o-\widehat{CAE}\left(1\right)\)
Tương tự ta cũng có :
\(\widehat{EAD}-90^o-\widehat{CAE}\left(2\right)\)
Từ (1) và (2) suy ra :
\(\widehat{BAC}=\widehat{EAD}\left(3\right)\)
Xét 2 tam giác ABC và EAD,chúng có :
\(AB=AE\left(gt\right),\widehat{BAC}=\widehat{EAD}\left(theo\left(3\right)\right),AC=AD\left(gt\right)\)
Vậy \(\Delta ABC=\Delta AED\left(c.g.c\right)\)
b) Do 2 tam giác ABC và AED = nhau ta có :
\(BC=ED\&\widehat{C}=\widehat{D}\left(4\right)\)
Ta lại có \(CM=\frac{1}{2}BC;DN=\frac{1}{2}ED\)Vì M và N là trung điểm của BC và AD .
=> CM = AN
Hai tam giác AMC = AND có :
AC = AD (gt) \(\widehat{C}=\widehat{D}\left(theo\left(4\right)\right),CM=DN\left(theo\left(5\right)\right)\)
Vậy \(\Delta AMC=\Delta AND\left(c.g.c\right)\)