CMR:2^1234+3^4321+3 chia hết cho 22
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(A=1+2+2^2+2^3+...+2^{99}\)
\(\Rightarrow2A=2+2^2+2^3+...+2^{100}\)
\(\Rightarrow A=2A-A=2+2^2+...+2^{100}-1-2-2^2-...-2^{99}=2^{100}-1\)
b) \(A=1+2+2^2+...+2^{99}=\left(1+2+2^2+2^3\right)+2^4\left(1+2+2^2+2^3\right)+...+2^{96}\left(1+2+2^2+2^3\right)\)
\(=15+2^4.15+...+2^{96}.15=15\left(1+2^4+...+2^{96}\right)\)
\(=3.5\left(1+2^4+...2^{96}\right)\) chia hết cho 3 và 5
c) \(A=1+2+2^2+...+2^{99}\)
\(=1+2\left(1+2+2^2\right)+...+2^{97}\left(1+2+2^2\right)\)
\(=1+2.7+...+2^{97}.7=1+7\left(2+...+2^{97}\right)\) chia 7 dư 1
=> A không chia hết cho 7
a/Ta có:
10^1234 = 100....0000 (1234 số 0)
Vậy 10^1234+2 = 100...0002 (1233 số 0)
Tổng các chữ số của 10^1234 là 1+2 = 3 chia hết cho 3 =>10^1234+2 chia hết cho 3
b/Bài b nếu tính theo cách giống như bài a thì ta có tổng các chữ số là : 10 không chia hết cho 9
Có thể là do đề của bạn sai hoặc có cách chứng minh khác mà mình không biết