K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 9 2023

a) Ta chứng minh \(\Delta HAB~\Delta OMN\). Thật vậy, từ đề bài, dễ thấy H, O lần lượt là trực tâm và tâm đường tròn ngoại tiếp của tam giác ABC. Vẽ đường tròn ngoại tiếp này. Dựng đường kính AD của (O). AH cắt BC tại E.

 Ta thấy \(\widehat{ACD}=\widehat{AEB}\left(=90^o\right)\) và \(\widehat{ADC}=\widehat{ABE}\) (góc nội tiếp cùng chắn \(\stackrel\frown{AC}\)). \(\Rightarrow\Delta ACD~\Delta AEB\left(g.g\right)\) \(\Rightarrow\widehat{BAH}=\widehat{CAO}\)

 Mà \(\widehat{CAO}=\widehat{OCA}\), thêm vào đó tứ giác OMCN nội tiếp (vì \(\widehat{OMC}=\widehat{ONC}=90^o\)) nên \(\widehat{OMN}=\widehat{OCN}\). Do đó \(\widehat{HAB}=\widehat{OMN}\)

 Hoàn toàn tương tự, ta suy ra \(\widehat{HBA}=\widehat{ONM}\). Từ đó suy ra \(\Delta HAB~\Delta OMN\left(g.g\right)\) (đpcm)

b) Ta thấy BH//CD\(\left(\perp AC\right)\) và CH//BD\(\left(\perp AB\right)\) nên tứ giác BDCH là hình bình hành. Mà M là trung điểm BC nên M cũng là trung điểm của DH. Lại có O là trung điểm của AD nên OM là đường trung bình của tam giác DHA \(\Rightarrow\left\{{}\begin{matrix}OM//AH\\OM=\dfrac{1}{2}AH\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}\widehat{HAG}=\widehat{GMO}\\\dfrac{AH}{OM}=\dfrac{GA}{GM}\left(=2\right)\end{matrix}\right.\)

\(\Rightarrow\Delta AHG~\Delta MOG\left(c.g.c\right)\) (đpcm)

c) Từ \(\Delta AHG~\Delta MOG\Rightarrow\widehat{AGH}=\widehat{MGO}\)

Do A, G, M thẳng hàng nên \(\widehat{AGH}+\widehat{HGM}=180^o\) 

Từ đó suy ra \(\widehat{HGM}+\widehat{MGO}=180^o\) \(\Rightarrow\) H, O, G thẳng hàng.

12 tháng 3 2021

Dễ thấy H là trực tâm của tam giác ABC.

a) Bỏ qua

b) Gọi T là trung điểm của HC.

Ta có NT là đường trung bình của tam giác AHC nên NT // AH. Suy ra NT // OM.

TM là đường trung bình của tam giác BHC nên MT // BH. Suy ra  MT // ON.

Từ đó tứ giác NTMO là hình bình hành nên OM = NT = \(\dfrac{AH}{2}\).

Xét \(\Delta AHG\) và \(\Delta MOG\) có: \(\widehat{HAG}=\widehat{OMG}\) (so le trong, AH // OM) và \(\dfrac{AH}{MO}=\dfrac{AG}{MG}\left(=2\right)\).

Do đó \(\Delta AHG\sim\Delta MOG\left(c.g.c\right)\).

c) Do \(\Delta AHG\sim\Delta MOG\left(c.g.c\right)\) nên \(\widehat{AGH}=\widehat{MGO}\), do đó H, G, O thẳng hàng.

 

 

27 tháng 6 2016

hiuhiu

12 tháng 7 2023

Mày nhìn cái chóa j

1 tháng 9 2017

đây nhé, cậu chịu khó tự vẽ hình vậy 

câu a, ta có MN//AB(đường trung bình ) nên \(\widehat{MNC}=\widehat{BAC}\)

mà \(\hept{\begin{cases}\widehat{MNC}+\widehat{ONM}=90^o\\\widehat{BAC}+\widehat{ABH}=90^o\end{cases}}\) => \(\widehat{ABH}=\widehat{MNO}\)

b)  kẻ \(BK⊥BC=B\) (K là giao của OC với BK)

ta có \(OM=\frac{1}{2}BK\Rightarrow O\) là trung điểm  của KC=>ON //AK( đường tb)

mà ON//BH=>AK//BH và ta có BK//AH nên AKBH là hình bình hành => BK=AH => 2OM=AH

mà 2GM=AG =>\(\frac{GM}{OM}=\frac{AG}{AH}\) (1)

mặt khác ta có \(\widehat{HAM}=\widehat{OMG}\) (so le trong )   (2) 

từ (1) và (2) =>tam giác AHG đồng dặng với tam giác MOG(ĐPCM)

c) dựa vào câu b nhé

1 tháng 9 2017

dễ mà

 a, ta có 
tam giác ABH đồng dạng với tam giác MNO (g.g) (chứng minh = cách sd t/c cua 2 góc có cạnh t/ứ //) 
=> AH/OM = AB /MN =2 => DPCM 
b,Gọi giao điểm của HO và AM là G' 
cần chứng minh G' trùng G 
Ta c/m đc tam giác AG'H đồng dạng tg MG'O 
=> AG' /MG' =AH/MO =2 => G' chia đoạn AM theo ti số 2:1 => G' là trọng tâm => G' trùng G 
=> ĐPCM

vậy là 3 k nhé

*****

25 tháng 6 2017

ko bt 

ai ko pc dống mik thì kb và tk cho mik nha

10 tháng 9 2017

trả lời đc câu hỏi thì mày muốn k bn thì tao k cho còn k thì đừng có hòng con nhỏ ngu