Tìm a, b, c : \(\overline{abc}+\overline{bca}=600\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(-\text{Theo bài ra: }\overline{abc}+\overline{bca}+\overline{cab}=666\)
\(\Rightarrow100a+10b+c+100b+10c+a+100c+10a+b=666\)
\(\Rightarrow111a+111b+111c=666\)
\(\Rightarrow111\left(a+b+c\right)=666\)
\(\Rightarrow a+b+c=6\)
\(-Do\left\{{}\begin{matrix}a>b>c>0\\a;b;c\in N\circledast\end{matrix}\right.\text{ nên suy ra }\left\{{}\begin{matrix}a=3\\b=2\\c=1\end{matrix}\right.\)
\(\text{Vậy số cần tìm là 321.}\)
1) Ta có : \(S=\overline{abc}+\overline{bca}+\overline{cab}=111a+111b+111c=111\left(a+b+c\right)=3.37.\left(a+b+c\right)\)
Giải sử S là số chính phương
=> 3(a + b + c ) \(⋮\) 37
Vì 0 < (a + b + c ) \(\le27\)
=> Điều trên là vô lý
Vậy S không là số chính phương
2/ Gọi số đó là abc
Có: \(\overline{abc}-\overline{cba}=\left(100a+10b+c\right)-\left(100c+10b+a\right)\)
\(=100a+10b+c-100c-10b-a=99a-99c=99\left(a-c\right)\)
Sau đó phân tích 99 ra thành các tích của các số và tìm \(a-c\) sao cho \(99\left(a-c\right)\)là một số chính phương (\(a;c\in N\)và \(a-c\le9\)
\(\overline{abc}+\overline{bca}=600\)
\(\Leftrightarrow\left(100a+10b+c\right)+\left(100b+10c+a\right)=600\)
\(\Leftrightarrow101a+110b+11c=600\)
\(\Leftrightarrow101a+11\left(10b+c\right)=600\)
\(\Leftrightarrow101a+11\overline{bc}=600\) (\(\overline{bc}\) có thể có b = 0)
Ta thấy \(11\overline{bc}⋮11\) và 600 chia cho 11 dư 6 nên 101a chia cho 11 dư 6 (1).
Ta lại có: 101a \(\le\) 600 nên a = 1; 2; 3; 4 hoặc 5. Thử từng trường hợp chỉ có 303 chia cho 11 dư 6. Do đó a = 3. Từ đó suy ra được \(\overline{bc}=27\)