Cho a,b,c phân biệt. CMR \(\left(\frac{a}{b-c}\right)^2+\left(\frac{b}{c-a}\right)^2+\left(\frac{c}{a-b}\right)^2\ge2\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu hỏi của Hoàng Minh Nguyễn - Toán lớp 9 - Học toán với OnlineMath
Đặt \(A=\frac{ab}{\left(b-c\right)\left(c-a\right)}+\frac{bc}{\left(c-a\right)\left(a-b\right)}+\frac{ca}{\left(b-c\right)\left(a-b\right)}=-1\)
\(\left(\frac{a}{b-c}+\frac{b}{c-a}+\frac{c}{a-b}\right)^2\ge0\)
\(\Leftrightarrow\left(\frac{a}{b-c}\right)^2+\left(\frac{b}{c-a}\right)^2+\left(\frac{c}{a-b}\right)^2+2A\ge0\)
\(\Leftrightarrow\left(\frac{a}{b-c}\right)^2+\left(\frac{b}{c-a}\right)^2+\left(\frac{c}{a-b}\right)^2\ge2\)
Không mất tính tổng quát, giả sử c là số nhỏ nhất.
Ta thấy nếu thay bộ (a;b;c) bởi (a-c;b-c;0) = (x;y;0) thì \(x,y\ge0\)
Và \(a+b\ge x+y;b+c\ge y;c+a\ge x\) . Khi đó ta có:
\(VT\ge\frac{\left(x+y\right)^2}{\left(x-y\right)^2}+\frac{y^2}{y^2}+\frac{x^2}{x^2}=2+\frac{\left(x+y\right)^2}{\left(x-y\right)^2}\ge2\).
Đẳng thức xảy ra khi \(\left\{{}\begin{matrix}x=-y\\c=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a-c=c-b\\c=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-b\\c=0\end{matrix}\right.\)
P/s: Em ko chắc đâu nha, kể cả về cách làm lẫn chỗ xét dấu =
Đặt \(x=\frac{a}{b-c};y=\frac{b}{c-a};z=\frac{c}{a-b}\)
\(\Rightarrow xy+yz+zx=\frac{ab}{\left(b-c\right)\left(c-a\right)}+\frac{bc}{\left(c-a\right)\left(a-b\right)}+\frac{ca}{\left(a-b\right)\left(b-c\right)}=-1\) (Tự CM)
Ta có: \(VT=x^2+y^2+z^2=\left(x+y+z\right)^2-2\left(xy+yz+zx\right)\ge2\)
=> ĐPCM
Giả sử:
\(a>b>c\Rightarrow a-b>0,b-c>0,a-c>0\)
Ta có:
\(\hept{\begin{cases}a^2+b^2+c^2\ge a^2+c^2\\\frac{1}{\left(a-b\right)^2}+\frac{1}{\left(b-c\right)^2}\ge\frac{\left(\frac{1}{a-b}+\frac{1}{b-c}\right)^2}{2}\ge\frac{8}{\left(a-c\right)^2}\end{cases}}\)
Từ đây ta có:
\(VT\ge\left(a^2+c^2\right).\frac{9}{\left(c-a\right)^2}\)
Ta chứng minh
\(\left(a^2+c^2\right).\frac{9}{\left(c-a\right)^2}\ge\frac{9}{2}\)
\(\Leftrightarrow\left(a+c\right)^2\ge0\)(Đúng)
Vậy ta có điều phải chứng minh là đúng. Dấu = xảy ra khi a = - c; b = 0 và các hoán vị của nó