Bài tập : Cho x,y là 2 số khác nhau thỏa mãn x2 - y = y2 - x
Tính giá trị của biểu thức A = x3 + y3 + 3xy(x2 + y2) + 6x2y2(x+y)
Giúp mình với ạ ... mình xin cảm ơn nhiều ...
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)Theo tính chất đại lượng tỉ lệ thuận ta có:
\(\frac{y1}{x1}=\frac{y2}{x2}\)\(\Rightarrow\)\(\frac{-3}{x1}\)=\(\frac{-2}{5}\)\(\Rightarrow\)x1=\(\frac{-3.5}{-2}\)=\(\frac{15}{2}\)
b)tương tự ta giải được x2=\(\frac{20}{3}\)
làm câu b cho mk luôn thử xem
câu a mk làm gióng bạn ồi
Chia dãy các số nguyên dương từ 1 đến 2020 thành 202 đoạn (1;10) (11;20) ... (2011;2020).
Vì A có 607 số nguyên dương khác nhau chia thành 202 đoạn nên theo nguyên lí Đi - Rich - Lê tồn tại ít nhất 1 đoạn chứa 4 số trong 607 số trên
Vì trong 4 số trên luôn tồn tại 2 số cùng số dư khi chia cho 3 , gọi 2 số đó là x , y ( x > y )
suy ra x - y chia hết cho 3
Mà x - y < 9
suy ra x , y thuộc (3;6;9)
\(x^2-y=y^2-x\)
=>x^2-y^2-y+x=0
=>(x-y)(x+y)+(x-y)=0
=>(x-y)(x+y+1)=0
=>x+y=-1
\(A=\left(x+y\right)^3-3xy\left(x+y\right)+3xy\left[\left(x+y\right)^2-2xy\right]-6x^2y^2\)
\(=-1+3xy+3xy\left[1-2xy\right]-6x^2y^2\)
=-1+6xy-12x^2y^2