Cho đa thức \(A=n^3+3n^2+2n\)
a, CMR: A luôn chia hết cho 6 với mọi số nguyên dương n
b, Tìm giá trị nguyên dương n (n < 10) để A chia hết cho 15
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(A=n^3+3n^2+2n\)
\(A=n\left(n^2+n+2n+2\right)\)
\(A=n\left[n\left(n+1\right)+2\left(n+1\right)\right]\)
\(A=n\left(n+1\right)\left(n+2\right)\)
Vì\(n;n+1;n+2\) là 3 số liên tiếp nên sẽ có một số chia hết cho 2, một số chia hết cho 3.
Mà \(ƯCLN(2;3)=1\) và \(2.3=6\) nên \(n\left(n+1\right)\left(n+2\right)⋮6\)
Hay \(A⋮6\) với mọi số nguyên dương n
b)Muốn \(A⋮15\) thì \(A⋮3;5\)
Ta có: \(n(n+1)(n+2)\)\(⋮3\left(1\right)\)
Mà để \(A⋮5\) thì \(n\) hoặc \(n+1\) hoặc \(n+2\) phải chia hết cho 5
\(\Rightarrow n=5\) hoặc \(n+1=5\) hoặc \(n+2=5\)
\(\Rightarrow n=5\) hoặc \(n=4\) hoặc \(n=3\)
\(\Rightarrow n\in\left\{5;4;3\right\}\)
a) \(n^3+3n^2+2n=n^3+n^2+2n^2+2n\)
\(=n^3+n^2+2n^2+2n\)
\(=n^2\left(n+1\right)+2n\left(n+1\right)\)
\(=\left(n^2+2n\right)\left(n+1\right)\)
\(=n\left(n+2\right)\left(n+1\right)\)
Vì n, n+1, n+2 là 3 số nguyên liên tiếp, mà trong 3 số nguyên liên tiếp luôn có 1 số chia hết cho 3
=>n3+3n2+2n chia hết cho 3
b)Để A chia hết cho 15 thì A phải chia hết cho 3 và 5
Ta đã chứng minh được A chia hết cho 3 với mọi số nguyên n ở phần a)
A chia hết cho 5 <=> n(n+1)(n+5) chia hết cho 5
+)Nếu n chia hết cho 5
=>n\(\in\){0;5}
+)Nếu n+1 chia hết cho 5
=>n\(\in\){4;9}
+)Nếu n+2 chia hết cho 5
=>n\(\in\){3;8}
Vậy n\(\in\){0;3;4;5;8;9} thì A sẽ chia hết cho 15
Trả My làm đúng nhưng phần b cậu thừa 1 đáp án nhé. Vì đề bài cho là tìm giá trị nguyên dương của n mà số 0 không phải là số nguyên dương cũng không phải số nguyên âm đâu nên loại đáp án là 0.
https://olm.vn/hoi-dap/detail/195347678157.html