So sánh
\(\sqrt{8}-\sqrt{5}̀\) và 1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
\(5\sqrt{2}+4\sqrt{5}-16=(\sqrt{50}-7)+(\sqrt{80}-9)\)
\(=\frac{1}{\sqrt{50}+7}-\frac{1}{\sqrt{80}+9}\)
Dễ thấy \(\sqrt{50}+7< \sqrt{80}+9\Rightarrow \frac{1}{\sqrt{50}+7}>\frac{1}{\sqrt{80}+9}\)
\(\Rightarrow 5\sqrt{2}+4\sqrt{5}-16=\frac{1}{\sqrt{50}+7}-\frac{1}{\sqrt{80}+9}>0\)
\(\Rightarrow 5\sqrt{2}+4\sqrt{5}>16\)
\(\sqrt{\sqrt{6+\sqrt{20}}}=\sqrt{\sqrt{5+2\sqrt{5}+1}}=\sqrt{\sqrt{\left(\sqrt{5}+1\right)^2}}=\sqrt{\sqrt{5}+1}< \sqrt{\sqrt{6}+1}\)
ta có \(\left(\sqrt{5\sqrt{3}}\right)^4=75\)
\(\left(\sqrt{3\sqrt{5}}\right)^4=45\)
\(\Rightarrow\sqrt{5\sqrt{3}}>\sqrt{3\sqrt{5}}\left(75>45\right)\)
Ta có :
\(\sqrt{50}+\sqrt{5}>\sqrt{49}+\sqrt{4}=7+2=9\)
Vậy \(\sqrt{50}+\sqrt{5}>9\)
\(\sqrt{8}\)-\(\sqrt{5}\)<1
Ta có : \(1=3-2=\sqrt{9}-\sqrt{4}\)
Vì \(\left\{{}\begin{matrix}\sqrt{9}>\sqrt{8}\\\sqrt{4}< \sqrt{5}\end{matrix}\right.\Rightarrow}\left\{{}\sqrt{8}-\sqrt{5}< \sqrt{9}-\sqrt{4}=1}\)