K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 12 2021

Bài 1:

a) Xét tam giác ABC vuông tại A có: 

+ D là trung điểm của AB (gt).

+ E là trung điểm của AC (gt).

=> DE là đường trung bình (Định nghĩa đường trung bình trong tam giác).

=> DE = \(\dfrac{1}{2}\)BC (Tính chất đường trung bình trong tam giác).

Mà BC = 10 cm (gt).

=> DE = 5 cm.

Vậy DE = 5 cm.

b) Xét tam giác ABC vuông tại A có: 

DE là đường trung bình (cmt)

=> DE // BC (Tính chất đường trung bình trong tam giác).

Ta có: F là trung điểm của BC (gt). => BF = CF = \(\dfrac{1}{2}\)BC.

Mà DE = \(\dfrac{1}{2}\)BC (cmt).

=> BF = CF = DE = \(\dfrac{1}{2}\)BC.

Xét tứ giác BDEF có: 

+ BF = DE (cmt).

+ BF // DE (do DE // BC).

=> Tứ giác BDEF là hình bình hành (dhnb).

c) Xét tam giác ABC vuông tại A:

+ D là trung điểm của AB (gt).

+ F là trung điểm của BC (gt).

=> DF là đường trung bình (Định nghĩa đường trung bình trong tam giác).

=> DF // AC  và DF = \(\dfrac{1}{2}\)AC (Tính chất đường trung bình trong tam giác). 

Ta có: DF = \(\dfrac{1}{2}\)AC (cmt).

Mà AE = CE = \(\dfrac{1}{2}\)AC (E là trung điểm AC).

=> AE = CE = DF = \(\dfrac{1}{2}\)AC.

Xét tứ giác ADEF có:

+ AE = DF (cmt).

+ AE // DF (do DF // AC).

=> Tứ giác ADEF là hình bình hành (dhnb).

Mà ^DAE = 90o (do tam giác ABC vuông tại A).

=> Tứ giác ADEF là hình chữ nhật (dhnb).

d) Gọi I là giao điểm của AF và DE.

Xét hình chữ nhật ADEF có: I là giao điểm của AF và DE (cách vẽ).

=> I là trung điểm của AF và DE (Tính chất hình chữ nhật). (1)

Ta có: G là điểm đối xứng của F qua D (gt).

=> D là trung điểm của CG.

=> DF = \(\dfrac{1}{2}\)GF.

Mà DF = \(\dfrac{1}{2}\)AC (cmt).

=> GF = AC.

Xét tứ giác GACF có:

+ GF = AC (cmt).

+ GF // AC (do DF // AC).

=> Tứ giác GACF là hình bình hành (dhnb).

=> Giao điểm của 2 đường chéo AF và GC là trung điểm mỗi đường (Tính chất hình bình hành).

Mà I là trung điểm của AF (cmt)

=> I là trung điểm của GC (2).

Từ (1) và (2) => Các đường thẳng AF; GC; DE cùng cắt nhau tại điểm I.

hay các đường thẳng AF; GC; DE cùng cắt nhau tại trung điểm mỗi đường (đpcm).

20 tháng 11 2021

Mn giải giúp em trong hôm nay với ạ:<<

a: Xét ΔABC có 

M là trung điểm của BC

N là trung điểm của AC

Do đó: MN là đường trung bình

=>MN//AB

Xét tứ giác ANMB có MN//AB

nên ANMB là hình thang

mà \(\widehat{NAB}=90^0\)

nên ANMB là hình thang vuông

b: Xét tứ giác AMCD có

N là trung điểm của AC
N là trung điểm của MD

Do đó; AMCD là hình bình hành

mà MA=MC

nên AMCD là hình thoi

HQ
Hà Quang Minh
Giáo viên
8 tháng 9 2023

a) Xét tứ giác \(ABDC\) có:
\(M\) là trung điểm của \(BC\) (gt)
\(M\) là trung điểm của \(AD\) (do \(D\) đối xứng với \(A\) qua \(BC\))
Suy ra \(ABDC\) là hình bình hành
b) Do \(\Delta ABC\) cân tại \(A\), có \(AM\) là trung tuyến (gt)
Suy ra \(AM\) là đường cao, trung trực, phân giác
Suy ra \(AM\) vuông góc \(BM\) và \(CM\)
Xét tứ giác \(OAMB\) ta có:
\(E\) là trung điểm của \(OM\) và \(AB\) (gt)
Suy ra \(OAMB\) là hình bình hành
Suy ra \(OB\) // \(AM\); \(OA\) // \(MB\); \(OA = BM\); \(OB = AM\)
Mà \(AM \bot BM\) (cmt)
Suy ra: \(AM \bot OA\); \(OB \bot MB\)
Mà \(AM\) // \(OB\) (cmt)
Suy ra \(OB \bot OA\)
Xét \(\Delta AOB\) và \(\Delta MBO\) (các tam giác vuông) ta có:
\(\widehat {{\rm{AOB}}} = \widehat {{\rm{OBM}}} = 90^\circ \)
\(AO = MB\) (cmt)
\(OB = AM\) (cmt)
Suy ra \(\Delta AOB = \Delta MBO\) (c-g-c)
Suy ra \(OM = AB\)
c) \(OM = AB\) (cmt)
Mà \(EM = EO = \frac{1}{2}OM\); \(EA = EB = \frac{1}{2}AB\)
Suy ra \(EO = EA = EM = EB\) (1)
Xét \(\Delta ABC\) cân ta có: \(\widehat {{\rm{ABC}}} = \widehat {{\rm{ACB}}}\) và \(AB = AC\)
Mà \(EA = EB = \frac{1}{2}AB\); \(FA = FC = \frac{1}{2}AC\) (gt)
Suy ra \(AE = EB = FA = FM\) (2)
Xét \(\Delta BEM\) và \(\Delta CMF\) ta có:
\(BE = CF\) (cmt)
\(\widehat {{\rm{ABC}}} = \widehat {{\rm{ACB}}}\) (cmt)
\(BM = CM\) (gt)
Suy ra \(\Delta BEM = \Delta CFM\) (c-g-c)
Suy ra \(EM = FM\) (3)
Từ (1), (2), (3) suy ra \(AE = AF = FM = ME\)
Suy ra \(AEMF\) là hình thoi

a: Xét ΔABC có 

D là trung điểm của AC

E là trung điểm của BC

Do đó; DE là đường trung bình

=>DE//AB

Xét tứ giác ABED có DE//AB

nên ABED là hình thang

mà \(\widehat{DAB}=90^0\)

nên ABED là hình thang vuông

b: Xét tứ giác AECF có 

D là trung điểm của AC

D là trung điểm của FE

Do đó: AECF là hình bình hành

mà EA=EC
nên AECF là hình thoi

c: Đề sai rồi bạn

10 tháng 1 2022

a, xét tam giác ABC có đường t/b ED:

=>ED//AB

xét tứ giác ABED có :

ED//AB 

BAC = 90\(^o\)

vậy ABED là hình thang vuông.

b, vì F đối xứng với E qua D nên:

ED=DF(1)

vì D là trung điểm AC nên:

AD=DC(2)

từ (1) và (2) suy ra :

tứ giác AECF là hình thoi.

c,vì ED //AB 

mà AB vuông góc Ac

=>ED vuông góc AC

<=>EDA là góc vuông 

xét tứ giác ABEH có :

\(EHA=BAC=EDA=90^o\)

vậy ABEH là hình chữ nhật.